College of Engineering
College of Engineering

The College of Engineering was established as a distinct unit of the University in 1897, although a program in civil engineering was offered in 1873. It is now organized into the departments of aerospace and mechanical engineering, chemical and biomolecular engineering, civil engineering and geological sciences, computer science and engineering, and electrical engineering.

Since its inception, the College of Engineering regards the primary purpose of all higher education as the development of the intellect, discriminatory power and judgment in all students to enable them to arrive at sound decisions in their personal lives and in the professional lives they will pursue after graduation. The programs of studies offered in the various departments of the college are, therefore, constructed to give the student a good knowledge of the basic sciences and of engineering principles and to prepare him or her for the manifold duties of an educated professional and for the cultural life of an educated person. Classroom instruction is amplified by laboratory work and field excursions that will give the student some experience in the application of principles to practical problems. Detailed excursions about the College of Engineering and its many programs can be found on the World Wide Web at www.nd.edu/~engineer.

Mission Statement. To nurture the intellectual growth of our students and to serve humanity through the creation, application, and dissemination of knowledge relevant to technology.

Accreditation and Academic Association. The College of Engineering is a member of the American Society for Engineering Education, and all engineering curricula are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

Registration of Engineers. Registration of engineers is required for many fields of practice. While young engineers need not acquire registration immediately upon graduation, they benefit by applying early for the required state examination. Graduating from accredited programs such as those offered by Notre Dame facilitates registration as a professional engineer.

Registration of Geoscientists. Registration is required for geoscientists to practice in many states. The degree in environmental geosciences (available through the Department of Civil Engineering and Geological Sciences) provides the necessary academic background for graduates to successfully complete registration as a professional geoscientist.

Programs and Degrees

The College of Engineering offers curricula leading to the degrees listed below:

- B.S. in aerospace engineering
- B.S. in chemical and biomolecular engineering
- B.S. in civil engineering
- B.S. in computer engineering
- B.S. in computer science
- B.S. in electrical engineering
- B.S. in environmental geosciences
- B.S. in mechanical engineering

To complete all the degree requirements, the student must take and pass all of the courses specified in the Bulletin for the given degree and must earn the total minimum number of course credit hours specified for the degree.

To obtain two undergraduate degrees from the College of Engineering, a student must successfully carry out an approved program of courses totaling at least 165 credit hours. These must include all of the courses specified in the Bulletin for each degree.

The master of science and doctor of philosophy degrees are offered in the fields of engineering listed above. The Department of Civil Engineering and Geological Sciences has programs leading to the degrees of master of science in environmental engineering, master of science in bioengineering, and master of science in geological sciences.

The Department of Computer Science and Engineering offers one master's degree, the master of science in computer science and engineering, and the doctor of philosophy.

The details of the programs and the engineering courses offered at the graduate level are in the Graduate School Bulletin of Information.

Engineering Common Core. All engineering curricula consist of each of the following:

Arts and Letters Core: 24 credit hours. Composition (one course), University Seminar* (one course), history (one course), social science (one course), fine arts or literature (one course), philosophy (two courses) and theology (two courses).

*The University Seminar may be selected from an appropriate history, social science, fine arts or literature course or the first course in theology or philosophy.

Program of Studies. The course of studies for first-year students intending to major in any program of the College of Engineering is completely uniform so that the student who is undecided as to a specialty may postpone the final choice until the spring semester of the first year. Included in the college are six engineering programs (aerospace, chemical and biomolecular, civil, computer, electrical, and mechanical) and two non-engineering programs (computer science and environmental geosciences). First-year students intending to pursue any of these programs should consult this Bulletin for the program of studies.

An entering student simply makes a "declaration of intent" of the undergraduate college which he or she proposes to enter as a sophomore and is not enrolled in a particular college as a first-year student.

First Year of Studies. The beginning college student who has been accepted as a first-year student enters the Notre Dame First Year of Studies. Here the student will have one academic year of basic collegiate studies before entering a given department and college. Before entrance as a first-year student, the student will have made a tentative declaration of intention to major in a given college. This declared intention serves as a guideline for the student and the advisors and counselors. In the spring of the first year of studies, with three-fourths of an academic year of actual experience at Notre Dame and with the benefit of counsel and advice received from the appropriate officials and University faculty, the first-year student will make a decision as to the department and college in which the student chooses to major. If the student is scholastically sound for the given choice, approval will be given.

A first-year student intending to major in any of the College of Engineering programs should take the following courses in the first year:

First Semester
- Composition or University Seminar* 3
- MATH 125: Calculus I 4
- CHEM 121: General Chemistry: Fundamental Principles 4
- Arts and Letters course* 3
- EG 111: Introduction to Engineering Systems I# 3
- Physical Education — 17

Second Semester
- University Seminar* or Composition 3
- MATH 126: Calculus II 4
- CHEM 122: General Chemistry: Biological Processes 3
- PHYS 131: General Physics I 4
- EG 112: Introduction to Engineering Systems II# 3
- Physical Education — 17
Humans in the Curriculum. The student enrolled in the College of Engineering is required to satisfy all University degree requirements, which include composition (three credits), University Seminar* (three credits), history (three credits), social science (three credits), fine arts or literature (three credits), philosophy (six credits) and theology (six credits).

For specific information on course offerings to satisfy these requirements, the student is expected to confer with a departmental advisor. A list of such courses scheduled each semester will be made available by the student’s advisor. ROTC students may be permitted to substitute three credits of upper-level air, military or naval science for either the history or social science requirement.

* The University Seminar may be selected from an appropriate history, social science, fine arts or literature course, or the first course in theology or philosophy and will satisfy the respective requirement.

Engineering Business Practice. The college recognizes the importance of providing its graduates with opportunities to learn how engineers function in the world of business, and several departments provide courses that are specifically tailored to provide skills, insight, and experience related to business practice by engineers.

A new multi-course sequence has been developed in the college that will provide additional opportunities in this area. The sequence can be taken by students in all departments of the college and is designed to increase the effectiveness of engineering graduates by developing an understanding of the dynamics of business operations. These courses include issues related to ethics, leadership, and business practices such as marketing, management, finance, and human resources and to examine the professional and leadership characteristics of modern industrial leaders. In the second course, students are expected to develop a business plan and execute it using a well-known computer simulation program.

Combination Five-Year Programs with the College of Arts and Letters. The engineering executive in modern industry should have a broad background in cultural, social and technical subjects. Some allowance is made for this in the prescribed four-year curricula, but in view of the extent of the technical field that must be presented, coverage of the cultural field is necessarily limited.

To realize the desired objective more fully, the College of Engineering, in cooperation with the College of Arts and Letters of the University, instituted in 1952, a five-year program that combines the basic stem of the liberal arts program with the technical requirements of the various engineering programs. The student completing this combination program will be awarded two degrees: the degree of bachelor of arts and the degree of bachelor of science in the professional course pursued.

Students pursuing this program must have strong scholastic ability and be acceptable to both the dean of the College of Arts and Letters and the dean of the College of Engineering. Choice of the program should be indicated by the end of the first year, but choice of a particular field of Arts and Letters may be deferred until the end of the second year.

The general sequence of courses in the five-year engineering-liberal arts program is found under “Dual Degree Programs,” later in this section of the Bulletin.

Combination Five-Year Program with the Mendoza College of Business. To address the needs of engineering students who wish to integrate management and engineering, the College of Engineering and the Mendoza College of Business have established a competitive cooperative program in which a student may earn the bachelor of science from the College of Engineering and the master of business administration in five years plus some summer sessions.

The program is structured so that a student who has completed the first three years of the bachelor’s degree program, if accepted, completes the master of business administration and the bachelor of science in a summer session and two subsequent academic years.

Students who wish to pursue this program should have a superior scholastic record in their undergraduate program and must make application to and be accepted by the M.B.A. program.

The general sequence of courses in the five-year engineering-M.B.A. program may be found under “Dual Degree Programs,” later in this section of the Bulletin.

Combination Five-Year Programs with Other Schools. The highly desirable objective to infuse more liberal arts work into the education of engineering students has been met in another way.

The University of Notre Dame has entered into agreements with Bethel College, Mishawaka, Ind.; Saint Mary’s College, Notre Dame, Ind.; St. Anselm College, Manchester, N.H.; College of St. Thomas, St. Paul, Minn.; Carroll College, Helena, Mont.; Stonehill College, North Easton, Mass.; and the University of St. Thomas, Houston, Tex., whereby the liberal arts part of combination five-year programs is given by these respective colleges and the engineering part by Notre Dame. In these cooperative programs, the student spends three years at a college of first choice and two years at Notre Dame. After completion of the program, the student receives a bachelor of arts degree from the first college and a bachelor of science degree in a College of Engineering program from Notre Dame.
The sequence of courses is essentially the same as in the Notre Dame engineering–liberal arts program; however, no attempt has been made to set up a rigid pattern, and each participating institution has complete freedom concerning the choice and arrangement of courses, provided that the coverage in the areas of mathematics, physics, chemistry, computing, introductory engineering, theology, philosophy, history, social science and literature or fine arts is appropriate. It is expected that the equivalent of the first two years of the College of Engineering program being offered for has been completed before transfer.

Details of these programs may be obtained by writing to the institutions concerned or to the dean of the College of Engineering.

Graduate Programs in Engineering.* The Graduate School of the University of Notre Dame is composed of four divisions: humanities, social science, science and engineering. The division of engineering of the Graduate School was organized in 1946 with power to grant advanced degrees in the departments of aerospace and mechanical engineering, chemical and biomolecular engineering, civil engineering and geological sciences, computer science and engineering and electrical engineering. The general conduct of graduate work is under the jurisdiction of the Graduate Council of the University, the members of which serve as specified in the Academic Articles. Director of the program in the engineering division is the dean of the College of Engineering.

* Reference should be made to the Graduate School Bulletin of Information for details of these programs and to the World Wide Web at www.nd.edu/~gradsch.html or www.nd.edu/~gradsch.

The Scope of the Graduate Program. Extensive graduate work in engineering takes place in the College of Engineering and encompasses all of its programs. The greater emphasis of today on research in industry and in governmental institutions has increased the demand for engineers with graduate degrees and made it desirable to include graduate work in the engineering curriculum. Both undergraduates and graduate students benefit from the advanced technological ideas being studied and developed.

Facilities for Graduate Work. All departments of the college have special laboratories, equipment and study rooms for graduate students. General facilities available include a high-performance computing facility, the University library and its special collections, the research libraries in science and engineering and the various research laboratories. The nearness of Chicago makes possible a certain amount of cooperation with the scientific institutions and special libraries of that city; and the concentration of industrial plants in nearby South Bend and the surrounding area provides excellent opportunity for study in the field and for cooperative research with industry.

College Awards and Prizes

COLLEGE OF ENGINEERING AWARD

The Rev. Thomas A. Steiner Prize. From a fund established in 1948 by former students of Rev. Thomas A. Steiner, C.S.C., former dean of the College of Engineering, a cash award is made to seniors in any department of the college who have been selected for their all-around excellence as students.

DEPARTMENTAL AWARDS

AEROSPACE AND MECHANICAL ENGINEERING

Patrick J. Deviny Award. Presented each year to a senior aerospace student who has displayed the most diligence and persistence in the pursuit of undergraduate studies in aerospace engineering.

Vincent P. Goddard Design Award. Presented each year to a senior in aerospace engineering for the best design in the senior aerospace design course.

Sigma Gamma Tau Honor Award. Presented to the outstanding graduate of the Aerospace Engineering Program.

The Zahm Prize for Aeronautical Engineering was founded in 1946 by Dr. Albert J. Zahm, distinguished pioneer in aeronautics and at one time professor of physics at the University of Notre Dame. The award is made by the program in Aerospace Engineering to the senior student of the program who, in the estimation of the faculty of the program, has achieved the most distinguished record in professional subjects.

American Society of Mechanical Engineers Certificate of Award. Presented each year to the outstanding student member of the Notre Dame Student Section of ASME.

Jerome L. Novotny Design Award. Presented each year to a senior in mechanical engineering for the best design in the senior heat transfer course.

CHEMICAL AND BIOMOLECULAR ENGINEERING

AIChE Scholarship Award. A certificate and a copy of Perry's Chemical Engineers’ Handbook awarded to the junior chemical and biomolecular engineering student who has the highest scholastic average during the first two years of study.

American Institute of Chemists Award. A certificate awarded each year to an outstanding senior in the Department of Chemical and Biomolecular Engineering.

Chemical Engineering Alumni Award. A certificate and a cash award to one or more seniors having an outstanding combination of scholarship and extracurricular activities.

Chemical Engineering Faculty Award. A certificate and a cash award to the senior having the highest scholastic average after seven semesters of study.

Chemical Engineering Research Award. A certificate and cash award to one or more undergraduate students considered to have performed outstanding undergraduate research.

CIVIL ENGINEERING AND GEOLOGICAL SCIENCES

The American Society of Civil Engineers. The Indiana Section presents each year an award to the two senior students most active in the Student Chapter of ASCE.

LeRoy D. Graves Academic Improvement Award. Presented to a senior civil engineering student for significant development in academic performance.

The Sydney Kealey Outstanding Scholar Award. Presented to a senior civil engineering student for excellence and creativity in academics.

The Kenneth R. Lauer Award. Presented to a senior civil engineering student for leadership, integrity and service to fellow students and community as determined by that student's classmates.

James A. McCarthy Scholarship in Civil Engineering. Presented to a junior civil engineering student for outstanding academic and professional excellence.

The Walter L. Shils Award for Undergraduate Achievement. Presented to a senior civil engineering student who has best fulfilled his or her potential as a student through hard work and dedication to obtaining the best possible education.

The Rev. Alexander Kirsch, C.S.C., Award. To the senior receiving a degree in geological sciences who has evidenced high qualities of personal character, scholarship and leadership.
Dr. Raymond C. Gutschick Award. To the graduating senior who has demonstrated the most promise in geological research as evidenced by a successful research project.

COMPUTER SCIENCE AND ENGINEERING

Outstanding Computer Engineering Award. To the graduating senior in computer engineering who has evidenced high qualities of personal character, scholarship and leadership.

Outstanding Computer Science Award. To the graduating senior in computer science who has evidenced high qualities of personal character, scholarship and leadership.

ELECTRICAL ENGINEERING

The Basil R. Myers Award. For achievement in electrical engineering, recalling circuit theory, the English language, and St. George Day at Notre Dame.

The James L. Massev Award. For achievement in electrical engineering, recalling communication theory, undergraduate teaching, and the Binary Examination.

The Arthur J. Quigley Award. For achievement in electrical engineering, recalling electronics, service to our neighbor, and the little man in the circuit.

The Lawrence F. Stauder Award. For achievement in electrical engineering, recalling electrical power, the IEEE Student Branch, and the Notre Dame Alumni.

The IEC William L. Everitt Award. For achievement in electrical engineering, computer engineering, or computer science, with an interest in the area of communications.

Student Organizations and Activities

THE NOTRE DAME TECHNICAL REVIEW

Since 1949, the students of the College of Engineering have been publishing the Notre Dame Technical Review at least three times each school year. It provides the opportunity for creative writing and for the management of a technical periodical. All the students support this activity and encourage wide participation by purchasing an annual subscription at a nominal rate.

HONOR SOCIETIES

TAU BETA PI

The Indiana Gamma Chapter of Tau Beta Pi was installed at Notre Dame in 1960 to foster a spirit of liberal culture in the engineering college and to recognize those who have conferred honor upon Notre Dame by distinguished scholarship and exemplary character as undergraduates in engineering or by their attainment as alumni in the field of engineering. Seniors and juniors in the top fifth and top eighth of their respective classes are eligible for election under rigid standards of scholarship, character, leadership and service.

ETA KAPPA NU

In 1962, the Delta Sigma Chapter of Eta Kappa Nu, the national honor society for electrical engineers, was installed at Notre Dame. Juniors, seniors and alumni eligible for membership because of scholastic attainment, leadership and quality of character may be identified with this association and may avail themselves of the privileges it affords.

PI TAU SIGMA

In 1963, the Sigma Beta Chapter of Pi Tau Sigma, the national honor society for mechanical engineers, was installed at Notre Dame. Juniors, seniors and alumni qualify for membership by scholastic attainment, leadership, quality of character and a demonstration of probable future success in engineering.

CHI EPSILON

The Notre Dame Chapter of Chi Epsilon, the national honor society for civil engineers, was installed at Notre Dame in 1966. The purpose of Chi Epsilon is to give recognition to those civil engineering students, faculty and alumni who have displayed superior qualities in scholarship, character, practicality and sociability during their professional careers.

SIGMA GAMMA TAU

The Notre Dame Chapter of the national honor society for Aerospace Engineering was installed in 1981. This organization recognizes and honors those individuals in the field of aeronautics and astronautics who have distinguished themselves through scholarship, integrity, service and outstanding achievement. Senior students who rank in the top third of their aerospace engineering class are eligible for admission.

PROFESSIONAL SOCIETIES

The several departments of the college actively support student chapters of their respective professional societies; these are:

- The American Institute of Chemical Engineers
- The American Society of Civil Engineers
- The American Society of Mechanical Engineers
- The American Institute of Aeronautics and Astronautics
- The Institute of Electrical and Electronic Engineers
- The Society of Women Engineers
- The Society of Black Engineers
- The Society of Hispanic Engineers

The Joint Engineering Council, a student organization, with representation from the student chapters of the professional and honor societies, serves to coordinate the activities of those chapters and encourages the pursuit of a professional attitude in the student body of the College of Engineering. The JEC serves to sponsor all those activities which are of general interest to the engineering student body.
Aerospace and Mechanical Engineering

Chair:
Stephen M. Batill
H. Clifford and Evelyn A. Brower Professor of Mechanical Engineering
Frank P. Incropera
Beth-Gibson Professor of Aerospace Engineering
Thomas J. Mueller
Viola D. Hank Professor of Mechanical Engineering
Hafiz M. Atassi
Clark Professor:
Thomas C. Corke

Professors:
Stephen M. Batill; Raymond M. Brach (emeritus); Patrick F. Dunn; Nai-Chien Huang (emeritus); Edward W. Jerger (emeritus); Eric J. Jumper; Francis M. Kobayashi (emeritus); Lawrence H. N. Lee (emeritus); Stuart T. McComas (emeritus); Victor W. Nee (emeritus); Robert C. Nelson; Timothy C. Owaert; Samuel Paolucci; Francis H. Raven (emeritus); John E. Renaud; Mihir Sen; Steven B. Skaar; Albin A. Szewczyk (emeritus); Flint O. Thomas; Kwang-tzu Yang (emeritus)

Associate Professors:
Edmundo Corona; Robert A. Howland; John W. Lucey; James J. Mason; Joseph M. Powers; Steven R. Schmid; Michael M. Stanisic

Assistant Professors:
Alan P. Bowling; J. William Goodwine Jr.; James E. Houghton (emeritus); Scott C. Morris; Glen L. Niebur; Ryan K. Roeder

Assistant Professional Specialist:
Rodney L. McClain; Richard B. Strebing

Program of Study:
The Department of Aerospace and Mechanical Engineering offers programs of study which lead to degrees of bachelor of science in aerospace engineering and mechanical engineering, respectively; master of engineering for mechanical engineers; and doctor of philosophy.

London Program. Students majoring in aerospace engineering and mechanical engineering may elect to spend the fall semester of their junior year in London. During their semester in London, students take courses offered by Notre Dame and British professors at Notre Dame’s London Centre near Trafalgar Square. The courses students take are Notre Dame courses, and credits earned are Notre Dame credits. The students take two or three technical courses and humanities elective courses so that they graduate with their class in the normal four years. Students participating in this program live as a group in residential facilities with supervision provided by the University. The semester enables students to combine their engineering studies with an opportunity to live and travel in Britain. Detailed information on this program can be obtained from the department office in 365 Fitzpatrick Hall, Notre Dame, IN 46556. Telephone (574) 631–5430, fax (574) 631–8341.

Program in Aerospace Engineering. This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. The aerospace program is designed to prepare those students interested in the design and operation of aircraft and space vehicles for entrance into a professional career. The curriculum, based on a solid foundation in mathematics, physics, chemistry, and the engineering sciences, places emphasis on such basic aerospace disciplines as aerodynamics and fluid mechanics, orbital mechanics, and solid and structural mechanics, as well as such integrating disciplines as design, experimental methods and systems analysis. Technical specializations in the junior and senior year enable students to emphasize specific technical areas, including fluid mechanics and aerodynamics, thermal sciences, structures, materials, space sciences, experimental aerodynamics, applied mathematics, and manufacturing.

The aerospace engineering program uses laboratories in Fitzpatrick Hall of Engineering and in the Hessert Laboratory for Aerospace Research. The Hessert laboratories contain superior facilities for instruction and research.

Students are encouraged to participate in the activities of the student chapter of the American Institute of Aeronautics and Astronautics and to enter the national student paper competition conducted by the parent institute. Outstanding achievement in the aerospace program is recognized by membership in Sigma Gamma Tau, the national aerospace honor society.

Further details about the standard aerospace program, the aerospace London Program and electives can be found on the World Wide Web at www.nd.edu/~ame. These details include the program of study requirements for graduating classes prior to the Class of 2005; the program below pertains only to the Class of 2005 and beyond.

Aerospace Engineering Program Objectives. The program objectives are to prepare students for entrance into professional careers in the aerospace industry, government, research laboratories, the engineering discipline in general, and graduate school. This preparation builds on the personal interaction and communication skills that are already part of the overall Notre Dame liberal arts experience, and is further based on a solid foundation in mathematics, physics, chemistry and the engineering sciences. The curriculum places emphasis on basic topics in aerospace sciences, design and experimental methods. Some specialization in specific areas including fluid mechanics and aerodynamics, thermal sciences, space sciences, experimental aerodynamics, manufacturing, and applied mathematics, may be obtained from technical specializations taken in the junior and senior years. The design content of the curriculum and the senior design experience emphasize overall system performance.

More specifically, the academic preparation has, as its objective, graduates who:

- Are familiar with multiple engineering disciplines and professional engineering practice—the kinds of things aerospace engineers do, the kinds of problems they solve, especially a breadth of familiarity with newer systems and designs such as those that are enabled by embedded computing.
- Understand key scientific first principles of aerospace engineering, and are competent deriving, and using, algebraic relationships, as well as ordinary or partial differential equations for modeling or simulation of discrete and continuous aeronautical and space systems by way of analytical and numerical treatment.
- Are aware of the essential function of common sensor types, and are experienced in acquiring digital data from a range of transducers; are able to compare, and gain insight from, a mix of analytical, numerical and experimental results.
- Have a pragmatic outlook toward design and are able to factor into design knowledge involving aerodynamics, flight mechanics, structures, propulsion, aerospace materials, manufacturability, as well as the ability to use analytical, numerical and experimental results; experienced with the integration of digital information processing in design.
- Are capable of programming computers including microprocessors using structured programming languages such as C, Matlab, and/or other similar languages; able to use CAD and other prepared software.
- Are able to communicate well, both orally and in writing, and function effectively in design groups both in leadership and support roles.
- Have an understanding of the impact of technology on the welfare of individuals and society; and are able to apply high ethical standards to the practice of engineering.
• Are able to engage in lifelong, independent learning; and a significant number carry on for further graduate study and are recognized as among the best aerospace engineering graduates in the country.

First Year of Studies
First-year students intending to major in aerospace engineering when they become sophomores will find first-year course requirements on the first page of the College of Engineering section.

Sophomore Year
First Semester
MATH 225: Calculus III 3.5
PHYS 132: General Physics II 4
AME* 225: Mechanics I 3
AME 240: Introduction to Aeronautics 3
Arts and Letters course* 3

Second Semester
MATH 228: Introduction to Linear Algebra and Differential Equations 3.5
AME 226: Mechanics II 3
AME 238: Solid Mechanics 4
AME 350: Aerodynamics I 3
Arts and Letters course* 3

Junior Year
First Semester
AME 301: Differential Equations, Modeling and Control I 3
AME 250: Measurement/Data Analysis 3
AME 327: Thermodynamics 3
AME 341: Computer-Aided Design and Manufacturing 3
Arts and Letters course* 3

Second Semester
AME 360: Aerodynamics II 3
AME 346: Aerospace Structures 3
AME 342: Aerodynamics Laboratory 4
AME 355: Aerospace Measurement System Design 3
Technical Specialization 3

Senior Year
First Semester
AME 440: Flight Mechanics/Design 3
AME 443: Aerospace Dynamics 3
AME 454: Aerospace Propulsion 3
Technical Specialization 3
Arts and Letters course* 3

Second Semester
AME 439: Heat Transfer 3
AME 441: Aerospace Design 4
AME 366 Orbital and Space Dynamics 3
Technical Specialization 3
Arts and Letters course* 3

Total for the four years: 129 semester hours.
* AME: Aerospace and Mechanical Engineering course
† See "Arts and Letters Core" on the first page of the College of Engineering section.
‡ A list of approved aerospace engineering and technical specialization courses is available in the department.

The Program in Mechanical Engineering. This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. The department offers a well-rounded program at the bachelor's level. The curriculum is built on a sound foundation in mathematics, physics, chemistry and the engineering sciences. In the undergraduate curriculum the student may obtain, by suitable selection of elective courses, a program suited to enable him or her to specialize in a given sequence or to prepare as a generalist. Elective course sequences are available in design, bioengineering, manufacturing, mechanical systems, solid mechanics, robotics, thermofluids, energy, and engineering business practice courses.

To prepare for today's changing technological world, the program requires a continual use of a computer in all of its courses.

Finally, for professional growth during formative years as engineers in training, students are encouraged to participate in the activities of the student chapter of the American Society of Mechanical Engineers. Outstanding achievement in the mechanical engineering program is recognized by membership in Pi Tau Sigma, the national mechanical engineering honor society.

Further details about the mechanical engineering program, the London Program and electives can be found on the World Wide Web at www.nd.edu/ -ame. These details include the program of study requirements for graduating classes prior to the Class of 2005; the program below pertains only to the Class of 2005 and beyond.

Mechanical Engineering Program Objectives. The general program objectives are to prepare students for entrance into professional careers in industry, government, research laboratories, the engineering discipline in general, and graduate school. This preparation builds on the interaction and communication skills that are already part of the overall Notre Dame liberal arts experience, and is further based on a solid foundation in mathematics, physics, chemistry and the engineering sciences. The curriculum places emphasis on basic topics in mechanical-engineering sciences, design and experimental methods. Some specialization in specific areas may be obtained from technical electives taken in the junior and senior years.

More specifically, the academic preparation has as its objective graduates who:

• Are familiar with multiple fields and types of professional practice, the kinds of things mechanical engineers do, the kinds of problems they solve, especially a breadth of familiarity with newer systems and designs such as those that are enabled by embedded computing and automation.
• Understand key scientific first principles of mechanical engineering, and are competent deriving, and using algebraic relationships, as well as ordinary or partial differential equations for modeling or simulation of discrete and continuous mechanical systems by way of analytical and numerical treatment.
• Are capable of acquiring and applying information for mechanical-engineering objectives; are experienced in acquiring digital data from a range of transducers; are able to compare, and gain insight from, a mix of analytical, numerical and experimental results.
• Have a pragmatic outlook toward design and are able to factor into design knowledge involving materials and manufacturing processes, as well as analytical, numerical and experimental results; are experienced with the integration of digital processing in design.
• Are capable of programming computers, including microprocessors, using structured programming languages such as C, Matlab, and/or other similar programming languages; able also to use CAD and other prepared software.
• Are able to communicate well, both orally and in writing, and function effectively in design groups in both leadership and support roles.
• Have an understanding of the impact of technology on the welfare of individuals and society; and are able to apply high ethical standards to the practice of engineering.
• Are able to engage in lifelong, independent learning; and a significant number carry on for further graduate study and are recognized as among the best mechanical engineering graduates in the country.

First Year of Studies
First-year students intending to major in mechanical engineering when they become sophomores will find first-year course requirements on the first page of the College of Engineering section.

Sophomore Year
First Semester
MATH 225: Calculus III 3.5
PHYS 132: General Physics II 4
AME* 225: Mechanics I 3
AME 230: Introduction to Mechanical Engineering 3
Arts and Letters course* 3

16.5
Second Semester
MATH 228: Introduction to Linear Algebra and Differential Equations 3.5
AME 226: Mechanics II 3
AME 238: Solid Mechanics 4
AME 250: Techniques of Measurements and Data Analysis 3
Arts and Letters course† 3
16.5

Junior Year
First Semester
AME 301: Differential Equations, Modeling and Control I 3
AME 341: Computer Aided Design and Manufacturing 3
AME 327: Thermodynamics 3
AME 340: Mechanical Engineering Design 3
Arts and Letters course† 3
15

Second Semester
AME 302: Differential Equations, Modeling and Control II 3
AME 334: Fluid Mechanics 3
AME 345: Modeling/Analysis and Design 3
EE 224: Introduction to Electrical Engineering 4
AME Elective† 3
Arts and Letters course† 3
16

Senior Year
First Semester
CHEG* 225: Materials Science 3
AME 470: Senior Design Project 4
AME 339 Kinematics/Dynamics 3
Technical Elective‡ 3
Arts and Letters course† 3
16

Second Semester
AME 439: Heat Transfer 3
AME Elective‡ 3
AME Elective‡ 3
Technical Elective‡ 3
Arts and Letters course† 3
15

225. Mechanics I
(3-0-3) Staff
Prerequisite: MATH 126, PHYS 131, EG 111 or equivalent.
Corerequisite: MATH 225.
Introduction to systems of forces and couples. Equilibrium of particles, rigid bodies, systems. Internal forces and moments, distributed forces, friction, virtual work. Fall and spring.

226. Mechanics II
(3-0-3) Staff
Prerequisite: AME 225, MATH 225.
Prerequisite: AME 225, MATH 225.
Introduction to Newtonian dynamics. Kinematics and kinetics (energy, linear and angular momenta) of particles, systems of particles and rigid bodies. Spring.

230. Introduction to Mechanical Engineering
(3-1-3) Staff
An introduction to the discipline of mechanical engineering. Application and integration of the varied mechanical engineering subdisciplines to practical case studies. Fall.

238. Solid Mechanics
(3-2-4) Staff
Prerequisite: AME 225, MATH 225.
An introduction to theoretical and experimental aspects of the mechanics of deformable solids. Concepts of stress, strain, stability, and deformation of simple structures are introduced. Experimental exercises may entail use of embeddable microprocessors. Spring.

240. Introduction to Aeronautics
(3-0-3) Staff
Prerequisite: MATH 126, PHYS 131.
An introduction to the atmosphere, fundamental concepts in fluid mechanics and airplane aerodynamics. Application of the principles of mechanics to aircraft flight performance, stability and control and design. Fall.

250. Techniques of Measurements and Data Analysis
(1-2-2) Corona, Dunn, Ovaert
Introduction to experimental methods used in aerospace and mechanical engineering, including basic instrumentation, data acquisition and data analysis techniques. Embeddable microprocessors may be used for data acquisition and/or control. Fall and spring.

301. Differential Equations, Modeling, and Control I
(3-1-3) Staff
First of a two-course sequence that introduces methods of differential-equation solution together with common engineering applications in vibration analysis and controls. Includes second-order, linear differential equations, feedback control, and numerical solutions to systems of ordinary differential equations. Fall.

302. Differential Equations, Modeling, and Control II
(3-1-3) Staff
Systems of nth-order differential equations, mechanical vibrations, linear feedback s-plane controls analysis, frequency response analysis, partial differential equations. Spring.

327. Thermodynamics I
(3-0-3) Staff
Prerequisite: AME 327.
Basic concepts of thermodynamics. The First Law of Thermodynamics. Work, heat, properties of substances and state equations. The Second Law of Thermodynamics. Applications to engineering systems. Student and/or instructor-conducted experiments may entail use of embeddable microprocessors. Fall and spring.

328. Intermediate Thermodynamics
(3-0-3) Staff
Prerequisite: AME 327.
This course will expand the student’s knowledge and interest into moist air processes, psychrometrics, gas mixtures and real gas behavior. The course will also present the basics of chemical equilibrium and chemical reactions. Energy-related problems will pose the focus; for example, problems including vapor and gas cycle analysis. Fall.

334. Fluid Mechanics
(3-0-3) Staff
Prerequisite: AME 226, MATH 228.
A basic course in fluid mechanics. Topics include fluid properties, hydrostatics, conservation laws, dimensional analysis, internal and external flows. Student and/or instructor-conducted experiments may entail use of embeddable microprocessors. Spring.

335. Intermediate Dynamics
(3-0-3) Howland
Prerequisite: AME 226, MATH 228.
Kinematics and dynamics of rigid bodies in three dimensions, Lagrange’s equations and linear vibrations. Fall.

339. Kinematics and Dynamics of Machines
(3-0-3) Stanisic
Prerequisite: AME 226, MATH 228.
Kinematic and dynamic analysis and synthesis of machinery with design applications. Fall.

340. Mechanical Engineering Design
(3-0-3) Staff
Prerequisite: AME 238.
Static and fatigue failure theories. Theory, design and selection of gearing, power transmitting shafts, rolling element bearings, journal bearings, fasteners, springs, brakes and clutches. Fall.

341. Computer-Aided Design and Manufacturing
(1-4-3) Staff
Prerequisite: AME 238.
Principles of engineering-raphic communication: visualization, sketching, orthographic projection, principal and auxiliary projections, 3D surfaces, and feature-based design. Geometric dimensioning and tolerancing, computer-integrated manufacturing, and rapid prototyping. Fall.

342. Aerodynamics Laboratory
(1-4-3) Thomas, Nelson, Morris
Prerequisite: AME 250.
Corerequisite: AME 360.
Use and operation of subsonic and supersonic wind tunnels, flow velocity, pressure and strain gauge measurements, data acquisition and analysis, with emphasis on interpretation of aerodynamic flow phenomena. Spring.
343. Engineering Economy
(3-0-3) Staff
A study of methods for determining the comparative financial desirability of engineering alternatives, including the use of time, various levels of cost/revenue and interest rates as parameters in the evaluation. Fall.

345. Modeling and Analysis in Mechanical Engineering Design
(3-0-3) Staff
Modeling and analysis of mechanical systems. Automated design decision process, introduction to statistical methods, materials engineering, requirements definition and product specifications. Spring.

346. Aerospace Structures
(3-0-3) Staff
Prerequisite: AME 238.

348. Introduction to Nuclear Engineering
(3-0-3) Staff
An introduction to the various areas within nuclear engineering. Attention is paid specifically to the application of nuclear-related phenomena to the practice of engineering. Not every year.

350. Aerodynamics I
(3-0-3) Staff
Prerequisite: AME 240.
An introductory course on the study of aerodynamics. Primary emphasis is placed on the development of two-dimensional airfoil and finite-wing theories. An introduction to boundary layers is also included. Spring.

355. Aerospace Measurement Systems Design
(3-0-3) P. Dunn
Individual and team-based design, fabrication, calibration, and implementation of on-board measurement systems for remote data acquisition. Emphasis is placed on developing a sensor/microprocessor/memor system that will be used in the subsequent senior aerospace design project in AME 441. Spring.

360. Aerodynamics II
(3-0-3) Staff
Prerequisite: AME 350 or AME 334, or AME 327.
An intermediate course of the study of the dynamics and thermodynamics of compressible flow for both internal and external geometries, including boundary layer effects. Applications of compressible flow principles to propulsive nozzles, flight simulation facilities and supersonic airfoil problems. Spring.

366. Orbital and Space Dynamics
(3-0-3) Howland
Prerequisite: AME 226.

425. Vibrations
(3-0-3) Howland, Skaar, Bowling
Prerequisites: MATH 325, AME 226.
Free, steady and transient response of linear single and multiple degrees of freedom systems. Viscous damping, dry friction damping, energy methods and numerical techniques. Fall. (Note: AME 425 will be taught for the last time in fall 2003.)

435. Statistical Quality Methods
(3-0-3) Staff
Prerequisite: MATH 225.
Topics covered include statistical concepts such as population, probability distribution, mean, variance, samples and data treatment; also, statistical process control including process control charts and process capability; introduction to design of experiments and Taguchi methods. Fall.

438. Intermediate Fluid Mechanics
(3-0-3) Staff
Prerequisite: AME 334 or AME 360.
A second course in fluid mechanics, including potential flow, viscous flow, thermal convection, compressible flow and advanced topics. Fall.

429. Heat Transfer
(3-0-3) Staff
Prerequisites: AME 327, AME 334 or AME 350.
An introductory course covering three modes of heat transfer: steady and unsteady conduction, elementary boundary layer analysis for laminar and turbulent convection and the basic theory of radiation. Spring.

440. Flight Mechanics and Introduction to Design
(3-0-3) Corke
Prerequisite: AME 350.
The fundamentals of flight performance are developed. Primary emphasis will be on examining how configuration design parameters affect aircraft performance. Students are introduced to aircraft preliminary design methodology. Fall.

441. Aerospace Design
(2-4-4) Corke
Prerequisite: AME 440.
Team design project with application to an aerospace system development. Includes topics in all associated technologies, design methodology, standards and engineering ethics. Spring.

443. Aerospace Dynamics
(3-0-3) Nelson
Prerequisites: AME 226, AME 437.
Mechanics and equations of motion. Aerodynamics forces and motions, longitudinal, lateral and roll motions. Introduction to autopilot design. Fall.

444. Optimum Design of Mechanical Elements
(3-0-3) Renaud
Prerequisite: MATH 325.
Introduction to basic optimization techniques for mechanical design problems. Current applications. Spring.

445. Intermediate Heat Transfer
(3-0-3) Staff
Prerequisite: AME 439.
Fundamentals of heat convection and radiation, scalings and heat transfer analysis in external and internal flows, turbulent heat transfer, thermal radiation properties of ideal and real surfaces, radiative transfer with participating media. Not every year.

446. Finite Element Methods for Structural Analysis
(3-0-3) Staff
Prerequisite: AME 238.
An introduction to matrix methods in structural analysis and matrix methods for linear systems. The finite element stiffness method is applied to static, dynamic and stability analysis of lightweight structures. Yearly.

450. Computational Fluid Dynamics
(3-0-3) Thomas
Prerequisites: AME 334 or AME 360.
An introduction to the fundamentals of computational aerodynamics/ fluid mechanics. Numerical techniques are developed and applied to the solution of several practical fluid mechanics and aeronautics problems. Yearly.

451. Fatigue and Fracture of Engineering Structures
(3-0-3) Staff
Prerequisite: AME 238.
An introduction to fatigue and fracture mechanics from an applications viewpoint. Phenomenology, linear elastic fracture mechanics and traditional fatigue design, experimental measurements, fracture criteria and control plans, safe-life and fail-safe design methodologies, life-prediction, and introduction to elastic-plastic fracture mechanics. Not every year.

454. Aerospace Propulsion
(3-0-3) Staff
Prerequisites: AME 360, AME 327.
The mechanics and thermodynamics of air-breathing propulsion devices. The mechanics of various space propulsion systems are also presented, including an introduction to rocket propulsion. Fall.

456. Fundamentals of Combustion
(3-0-3) Powers
Prerequisites: AME 327, AME 439.
Thermodynamics and chemical kinetics of combustion reactions, modeling of reacting fluid mechanical systems, subsonic and supersonic combustion, detailed and one-step kinetics, ignition theory, asymptotic and numerical techniques for modeling combustion systems. Not every year.
459. Advanced Mechanics of Solids
(3-0-3) Staff
Prerequisite: AME 238.
The course covers fundamental principles and techniques in stress analysis of trusses, beams, rigid frames and thin-walled structures. Emphasis is placed on energy methods associated with calculus of variations. Not every year.

460. Particle Dynamics in Atmospheric and Space Environments
(3-0-3) Dunn
Prerequisite: AME 350 or AME 334.
A senior-level undergraduate course designed to introduce the student to the subject of aerosol mechanics, with emphasis on the fundamental laws that govern particle formation, transport and deposition in atmospheric and space environments. Not every year.

465. Space Systems and Analysis
(3-0-3) Staff
Prerequisite: Junior or senior standing in engineering. Missions, spacecraft dynamics, attitude determination and control, space environment, spacecraft power, telecommunications, avionics, data handling/processing and other topics that may include configuration, load determination and structure and thermal control. Spring.

466. Engineering Analysis of Manufacturing Processes
(3-0-3) Staff
Prerequisites: AME 238, CHEG 225.
A senior elective course dealing with the application of engineering analysis to casting, forming machining and joining processes, as well as other advanced manufacturing processes. Spring.

469. Introduction to Robotics
(3-0-3) Goodwine, Bowling
Prerequisite: MATH 325.
Kinematics of 2-D and 3-D robots; statics and dynamics; design considerations; actuators; sensors; control fundamentals; artificial intelligence; and vision systems. Experiments in the robotics laboratory demonstrate the fundamentals of robotics. Spring.

470. Senior Design Project
(2-4-4) Stanisic, Batill
Prerequisite: AME 469 or instructor’s consent.
A course that provides a student with the opportunity to pursue a more advanced design topic or in-depth project which was started in AME 470. Requires department approval at the beginning of the senior year. As needed.

474. Manipulation Using Vision and Estimation
(3-0-3) Skaar
Prerequisite: AME 469 or instructor’s consent.
A study of tools of estimation and stochastic modeling and their use in the application of artificial vision to the guidance and control of multi-degree-of-freedom mechanisms. The Kalman filter and extended Kalman filter are developed; state and observation equations, based, respectively, on robot mechanisms and discrete visual issues of image analysis, time delay, and the modeling of random disturbance covariances as well as kinematic holonomy. Fall.

475. Vision-Based Robotic Versatility and Precision
(3-0-3) Skaar, Stanisic
Prerequisites: AME 469, 473 and 474.
The course entails application of camera-space manipulation to the control of dextrous manipulators for purposes of realizing a new system that satisfies and Industrial Partner’s “design challenge.” The course is primarily a group-design and group-fabrication/testing experience. Not every year.

480. Advanced Design Project
(V-V-V) Staff
Prerequisites: Senior standing.
A course to provide a student with the opportunity to pursue a more advanced design topic or in-depth project which was started in AME 470. Requires approval of the department at the beginning of the senior year. As needed.

498. Special Studies
(V-V-V) Staff
Prerequisites: Senior standing and approval of the chair.
Individual or small group study under the direction of a faculty member in an undergraduate subject not currently covered by any University course. As needed.

499. Undergraduate Research
(V-V-V) Staff
Prerequisite: Approval of chair.
A research project at the undergraduate level under the supervision of a faculty member. Fall and spring.
The following graduate courses, described in the Graduate School Bulletin of Information, are also open to advanced undergraduates with permission of the department chair.

521. Numerical Methods
541. Advanced Kinematic Systems
542. Advanced Mechanical Behavior of Animals
550. Advanced Control Systems
551. Advanced Vehicle Dynamics
553. Introduction to Acoustics and Noise
554. Analytical Mechanics
558. Elasticity
561. Mathematical Methods I
The undergraduate program at Notre Dame is notable for its combination of a strong fundamental focus in chemical engineering courses with a broad humanities and science education provided in courses outside of chemical engineering. The science and humanities courses prepare students both for study of chemical engineering and to understand the complex scientific, social and moral issues of the world today. Our intention in emphasizing fundamentals is to develop students’ intellect and to equip them with enduring knowledge in chemical engineering and related fields. Thus, our undergraduate chemical engineering curriculum provides students with not only a preparation for a career as chemical engineers, but for a lifetime of learning and a lifelong career in areas that may include Law, Medicine or Business.

University of Notre Dame Undergraduate Program Goals. Students who have graduated in Chemical Engineering at Notre Dame have pursued, successfully, a wide range of career paths. The faculty believes that this has resulted from the interests of students who enter our program and is facilitated by our emphasis on fundamental aspects of chemical engineering. Thus consistent with the mission of the University, the Department of Chemical and Biomedical Engineering program seeks to develop students who:

1. Pursue knowledge and commensurate understanding and critically evaluate the consequences of these.
2. Communicate clearly and effectively.
3. Demonstrate proficiency in the art and science of chemical and biochemical engineering.
4. Appreciate their social and moral responsibilities both within their careers in engineering and through service in their communities.
5. Understand how chemical engineering connects with other major disciplines to produce the goods and services needed by society.

Within the chemical engineering degree program, students can use their electives to construct course sequences in Materials, Environmental Chemical Engineering and Biomedical Engineering. A suggested course sequence for students interested in going to medical school is also available.

More than one-quarter of the chemical engineering undergraduates participate in research activities with Faculty and Graduate students at some time in their careers in such areas as advanced materials, ionic liquids as environmentally benign solvents, biomaterials, microfluidic devices, catalysis, fuel cells and drug delivery techniques.

Further details about the chemical engineering program may be found on the World Wide Web at www.nd.edu/~chegdept. These details include the program of study requirements for graduating classes prior to the Class of 2007. The program below pertains only to the Class of 2007 and beyond.
Second Semester
Chemical Engineering Elective* 3
CHEG 448: Chemical Process Design 3
Technical Elective* 3
Engineering/Chemistry Elective * 3
Arts and Letters course† 3

† Honor students may elect CHEM 235 and 236.
* All electives are selected from a list available in the department office.
† See "Arts and Letters Core" on the first page of the College of Engineering section.

Total for the four years: 132 semester hours.

Course Descriptions. The following course descriptions give the number and title of each course. Lecture hours per week and laboratory and/or tutorial hours per week and credits each semester are in parentheses.

(3-0-3) Miller
Prerequisite: CHEM 116, 118, or 122.
This is an introductory course that examines the relationship between the structure, processing, and properties of engineering materials. Common engineering materials, including steel, concrete, ceramics and polymers are discussed. Mechanical, chemical, electrical, and magnetic properties of various materials are examined. The process dependence of microstructural development and defects levels are described.

255. Introduction to Chemical Engineering Analysis
(3-0-3) Ostafin
Prerequisite: CHEM 116, 118, or 122.
This is a foundation course in which the students learn to apply the concepts of material and energy balances to problems involving chemical processes, biological systems and environmental phenomena. Within this context, they learn problem-solving techniques and acquire a working knowledge of phase equilibria, physical properties and computer applications.

256. Chemical Engineering Thermodynamics
(3-3-4) Brennecke
Prerequisite: CHEG 255.
The course provides an introduction to modern applied thermodynamics, with a focus on aspects relevant to chemical engineers. It begins with a review of the first law energy balance, followed by the development of the second law entropy balance. Thermodynamic constitutive equations for gases and liquids are developed from a molecular-level perspective, followed by applications involving thermodynamic cycles and energy conversion. The second half of the course concerns stability, thermodynamics of mixtures, and phase and chemical equilibrium.

258. Computer Methods in Chemical Engineering
(3-0-3) Palmer
Prerequisite: CHEG 255.
Algorithms for solving algebraic (e.g. Gaussian Elimination, PLU decomposition, etc.) and differential equations (e.g. Runge-Kutta, Shooting method) are derived and implemented using Matlab. Statistics and error analysis constitute a significant part of the course.

290. Career Choices for Engineers
(1-0-1) Frailey
A series of presentations featuring selected speakers who are employed or consult with high tech business enterprises of both national and global involvement. The presentations and open symposium format will emphasize business ethics, competitive pressures, people skills and most importantly, career opportunities for engineering graduates.

355. Transport Phenomena I
(3-0-3) Leighton
Prerequisite: CHEG 256.
Basic conservation principles of energy, mass and momentum are used to derive the integral and differential forms of the transport equations. These equations are used to solve fluid flow problems of both fundamental and practical interest.

356. Transport Phenomena II
(3-0-3) Wolf
Prerequisite: CHEG 355.
Integral and differential transport equations are applied to the solution of heat and mass transfer problems of interest to chemical engineers.

358. Chemical Engineering Laboratory I
(1-4-3) Saddawi
Prerequisite: CHEG 355.
Chemical engineering laboratory courses are comprised of experiments that cover most of the major subject areas of chemical engineering. The rationale for combining all of the topics into two separate courses, as opposed to distributing them into the different lecture courses, is to provide a focused learning experience emphasizing experimental techniques to observe fundamental behavior, understanding of the phenomena in terms of the appropriate theory and experience at technical report writing. Formal and informal oral presentation skills are also an important part of the courses.

438. Chemical Process Control
(3-0-3) Stadther
Prerequisite: CHEG 356.
While the idealization of chemical processes is that they are operated at steady-state, they are in fact usually dynamic (unsteady state). Process feed compositions may change slightly, ambient conditions may change, pipe leaks may develop, steam pressures may vary, etc. There are any number of such disturbances that may cause the process to deviate from its desired steady-state. In some cases, such deviations may be catastrophic, in other cases a severe loss of product quality may be caused. Thus process control devices are installed that detect deviations from the desired steady-state and attempt to correct them. In this course, students will be introduced to the analysis of chemical process dynamics, and to the design and analysis of process control systems.
443. Separation Processes
(3-0-3) Hill
Prerequisite: CHEG 356.
This course demonstrates the application of the principles of phase equilibria, transport processes and chemical kinetics to the design and characterization of stagewise and continuous separation processes. Both graphical and rigorous numerical techniques are used, and the general procedures applicable to different specific processes are emphasized. Example problems are drawn from the petroleum, chemical, food, biochemical and electronic materials processing industries.

445. Chemical Reaction Engineering
(3-0-3) Varma
Prerequisite: CHEG 356.
The basic concepts of chemical rate processes are applied to the theory of the design and operation of the various types of commercial reactors for both noncatalytic and catalytic reactions. Topics covered include mole balances, rate laws and stoichiometry, collection and analysis of rate data, multiple reactions, isothermal and nonisothermal reactor design, catalysis and catalytic reactors.

448. Chemical Process Design
(3-0-3) Maginn
Prerequisite: CHEG 443, 445.
This course represents a capstone in the chemical engineering curriculum. In this course students will have the opportunity to apply the basic concepts learned in previous courses to the design and analysis of a chemical processing system. This will be done primarily through the design project. Supporting material to be covered in lectures includes the following: computer-aided design (process simulation), economic analysis, process safety, flowsheet synthesis (conceptual design), and decision making analysis (optimization).

458. Chemical Process Simulation and Optimization
(3-0-3) Stadtherr
Prerequisite: CHEG 438.
This course provides an overview of the computational methodologies used for chemical process simulation and optimization. Topics include partitioning and taping, nonlinear equation solving, and nonlinear programming.

459. Chemical Engineering Laboratory II
(1-4-3) Saddawi
Prerequisite: CHEG 356, 358.
Chemical engineering laboratory courses are composed of experiments that cover most of the major subject areas of chemical engineering. The rationale for combining all of the topics into two separate courses, as opposed to distributing them into the different lecture courses, is to provide a focused learning experience emphasizing experimental techniques to observe fundamental behavior, understanding of the phenomena in terms of the appropriate theory and experience at technical report writing. Formal and informal oral presentation skills are also an important part of the courses.

461. Structure of Solids
(3-0-3) McGinn
Prerequisite: CHEG 225.
This class seeks to provide students with an understanding of the structure of solids, primarily as found in metals, alloys, and ceramics applied in technological applications. The structure of crystalline solids on the atomic level as well as the microstructural level will be discussed. Imperfections in the arrangements of atoms will be described, especially as regards their impact on properties. The study of structure through X-ray diffraction will be a recurring theme. A sequence of powder diffraction laboratory experiments (four to five class periods) also will be included.

463. Laboratory Techniques in Materials Science
(0-4-1) McGinn
Prerequisite: CHEG 225.
This course is intended for Junior Chemical Engineering majors who are participating in the materials certificate program. The goal of the course is to introduce students to instrumentation they will likely use in the course of their senior thesis research. Laboratory sequences last from two to four weeks. A laboratory report is written for each lab as per instructions from each professor.

472. Topics: Ecology and Environment
(3-0-3) Schmitz
Prerequisite: CHEG 443, 445.
This course covers various topics pertaining to the Earth's ecological and biogeochemical systems and the effects of disturbances or imbalances, particularly those caused by human/industrial activities. Based on fundamentals incorporated in such subject areas as chemical reaction engineering, process dynamics, and transport phenomena, the principal topics center on population and ecosystem dynamics, and on the Earth's natural and altered environments. Examples and applications are drawn from such subjects as the endangerment or extinction of species, biogeochemical cycles, greenhouse gases and global warming, ozone pollution in the troposphere and depletion in the stratosphere, pollutant dispersion, and acid rain.

The course makes extensive use of methods of mathematical modeling, nonlinear dynamics, and computer simulations.

In major course assignments, students work in small groups on modeling/simulation projects.

473. Environmental Design
(3-0-3) Brennecke
Prerequisite: CHEG 258, 356.
The goals of this course are to explore how to design and operate chemical processes so that we avoid or decrease the amount of pollutants that are released into the environment. Thus, this is essentially a course in pollution prevention. In the course, we identify and apply chemical engineering principles learned in previous classes (thermodynamics, phase equilibria, transport, reaction engineering) to environmental problems. In addition to normal lectures, discussions and homeworks, the course is comprised of a series of case studies that compare the design and operation of chemical processes using conventional technology versus new technology that incorporates various principles of pollution prevention.

481. Biomedical Engineering Transport Phenomena
(3-0-3) Palmer
Prerequisite: CHEG 356.
This course brings together fundamental engineering and life science principles, and provides a focused coverage of key concepts in biomedical engineering transport phenomena. The emphasis is on chemical and physical transport processes with applications toward the development of drug delivery systems, artificial organs, bioartificial organs, and tissue engineering.

482. Biomaterials Engineering
(3-0-3) Ostafin
Prerequisite: CHEG 225, 356.
Biomaterials engineering is the application of engineering principles to design, develop, and analyze materials that involve biological molecules. These may be materials of biological origin that are used in medical, biological, or chemical applications, and materials of chemical origin that are used with biological systems or their components. In this course you learn about the basic principles involved in the choice of material properties, the nature of the interaction of biological materials with their surroundings, and modern applications in science, medicine and engineering. Issues relating to marketing, packaging and storage, regulation, and ethics will also be discussed. Students will have an opportunity to apply mathematical-based engineering analysis of complex biomaterials systems.
484. Bioprocess Engineering
(3–0–3) Ostafin.
Prerequisites: CHEG 256, 356.
Bioprocess engineering is the application of engineering principles to design, develop, and analyze processes that use biocatalysts. These may be in the form of a living cell, its substructures, or their chemical components. In this course you learn concepts of cellular biology, and be introduced to mathematical-based engineering analysis of complex biological systems. By the end of this course you should be able to understand basic structure and function of cells, homogeneous and heterogeneous enzyme kinetics, the regulation of cell growth, the design and operation of bioreactors, recovery and characterization of products, and methods in genetic engineering and molecular cloning.

498. Special Studies
(V-V-1) Staff
Prerequisite: Approval of chair.
A one-credit SU/U research project at the undergraduate level under the supervision of a faculty member. A written progress report describing the research project and results is required. This course must be completed before enrolling in the three-credit graded CHEG 499. Fall and spring.

499. Undergraduate Research
(V-V-3) Staff
Prerequisite: CHEG 498 and approval of chair.
A graded research project at the undergraduate level under the supervision of a faculty member. A substantial written document describing the research project, results and conclusions is required. Fall and spring.

The following graduate courses, described in the Graduate School Bulletin of Information, are also open to advanced undergraduates.

542. Mathematical Methods Engineering I
553. Advanced Chemical Engineering Thermodynamics
544. Transport Phenomena I
546. Advanced Chemical Reaction Engineering

Civil Engineering and Geological Sciences

Masman Chair:
Peter C. Burns
Robert M. Moran Professor of Civil Engineering:
Ahsan Kareem
Professors:
Peter C. Burns; Jeremy B. Fein; Patricia A. Maurice; Stephen E. Silliman; James I. Taylor (emeritus)
Associate Professors:
Lloyd H. Ketchum Jr.; David J. Kirkner; Yahya C. Kurama; Jerry J. Marley (emeritus); Clive R. Neal; J. Keith Rigby Jr.; Rev. James A. Rigert, C.S.C. (emeritus); Joannes J.A. Westerink
Assistant Professors:
Lynn A. Salvador; Jeffrey W. Talley; Wilasa Vichit-Vadakan
Associate Professional Specialist:
Jinesh C. Jain

Vision and Mission. The Department of Civil Engineering and Geological Sciences (CE/ENVG) aspires to be preeminent nationwide in our selected research and educational focus areas, to be ranked in the top quartile of civil engineering and environmental geoscience programs in the United States, to have global reach and impact in education and research, and to promote positive contributions to society in the Catholic tradition. CE/ENVG strives to provide a stimulating and unique interdisciplinary environment for learning and research by blending traditional disciplines of engineering and science. CE/ENVG offers outstanding educational programs for those aspiring to contribute as leaders in the fields of Civil Engineering, Environmental Engineering, and Environmental Geosciences. CE/ENVG’s educational objective is to provide students with the knowledge, skills, vision and ethical basis to contribute as leaders in design, construction and protection of our civil infrastructure, and understanding, management and remediation of the environment.

Program of Studies. The Department of Civil Engineering and Geological Sciences offers programs of study leading to the degrees bachelor of science in civil engineering, bachelor of science in environmental geosciences, master of science in civil engineering, master of science in geological sciences, master of science in environmental engineering, master of science in bioengineering and doctor of philosophy.

Australia Program. Students majoring in civil engineering or environmental geosciences may apply to spend the fall semester of their junior year in Perth, Australia, at the University of Western Australia (UWA). During their semester abroad, students will live and learn with Australian students. The courses taken are UWA courses that are the equivalent of those required by the respective curriculum so that students can graduate on time in the normal four years. A unique feature of this program is the Field Experience course, whereby a student undertakes a small research project with a Western Australian company that includes field work, technical writing, and technical presentations. Students will live in dormitories (called “colleges”) with Australian students, with supervision provided by UWA. The semester enables students to combine their engineering or geosciences education with an invaluable opportunity to study in a different culture and travel in Australia and the Far East. Detailed information can be obtained from the department office (156 Fitzpatrick Hall) or on the Web at www.nd.edu/~cneal/uwa.

London Program. Students majoring in civil engineering may elect to spend the fall semester of their junior year in London. During their semester in London, students take courses offered by Notre Dame and British professors at Notre Dame’s London Centre near Trafalgar Square. The courses students take are Notre Dame courses, and credits earned are Notre Dame credits. Civil engineering students take three required engineering courses and two humanities elective courses so that they graduate with their class in the normal four years. Students participating in this program live as a group in residential facilities with supervision provided by the University. The semester enables students to combine their engineering studies with an opportunity to live and travel in Britain. Detailed information on this program can be obtained from the department office, 156 Fitzpatrick Hall, Notre Dame, IN 46556; telephone (574) 631–5380.

Program in Civil Engineering. This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. The department presents a well-rounded program for the bachelor’s degree with the first two years devoted primarily to the basic principles of science and engineering. The third and fourth years are devoted to courses in the basic areas of civil engineering — structural analysis and design, hydraulics and hydrology, water supply and wastewater disposal, materials of construction, geotechnical engineering and transportation engineering. A student may emphasize a particular area of interest by selecting either the water resource/environmental sequence or the structures sequence and by the careful use of elective courses. Civil engineering electives in the senior year may be regular courses or individualized directed study or research courses.
Most courses in the program are prescribed for all civil engineering students so that each student receives a firm foundation in the many basic disciplines comprising the broad field of civil engineering. This is especially desirable, for often in the course of professional development the civil engineer is asked to coordinate the planning, design and construction of highly complex systems and must utilize many or all of these disciplines.

The department has excellent facilities for research available to both graduate and undergraduate students. These facilities include a structural dynamics/structural control laboratory; a materials testing and structural research laboratory; a groundwater hydrology field laboratory; a number of analytical laboratories for water, wastewater and hazardous waste treatment; and a computing room.

The professional aspects of civil engineering are emphasized and promoted by the activities of a student chapter of the American Society of Civil Engineers, in which all students of the department are eligible to participate.

Further details about the civil engineering and environmental geosciences programs may be found on the World Wide Web at www.nd.edu/~cegeos.

First Year of Studies
First-year students intending to major in civil engineering when they become sophomores will find first-year course requirements on the first page of the College of Engineering section.

Sophomore Year

First Semester
MATH 225: Calculus III 3.5
PHYS 132: General Physics II 4
AME 225: Mechanics 3
CE 242: Concepts of Civil Engineering Analysis 4
Arts and Letters course 3

Second Semester
MATH 228: Introduction to Linear Algebra and Differential Equations 3.5
AME 226: Mechanics II 3
CE 236: Mechanics of Solids 3
CE 235L: Materials/Solids Lab 2
CE 235: Civil Engineering Materials 3
Arts and Letters course 3

Junior Year

First Semester
MATH 325: Differential Equations 3
CE 336: Structural Mechanics I 3
CE 331: Stochastic Concepts in Engineering Planning and Design 3
AME 334: Fluid Mechanics 3
Arts and Letters course 3
Free Elective/EE 222: Introduction to Electrical Science 3

Second Semester
CE 344: Hydraulics 3
CE 442: Water Distribution and Wastewater Collection 3
CE 3XX: Specialization 3
AME 327: Thermodynamics I 3
AME 332: Fluid Mechanics Lab 2
Arts and Letters course 3

Senior Year

First Semester
Free Elective/EE 222: Introduction to Electrical Science 3
CE 440: Transportation Engineering 3
CE 441: Numerical Methods in Engineering 3
CE 4YI: Specialization 3 (4)
Civil Engineering Elective 3

Second Semester
CE 445: Introduction to Geotechnical Engineering 3
CE 4ZZ: Specialization 3
Technical Elective 3
Civil Engineering Elective 3
Arts and Letters course 3

Total for the four years: 134 or 135 semester hours.

*The specialization course sequence CE 3XX, CE 4YY and CE 4ZZ consists of either series A or series B:

(A) Structural Sequence
CE 356: Structural Mechanics II 3
CE 466: Structural Steel Design 3
CE 486: Reinforced Concrete Design 3

(B) Water Resources/Environmental Sequence
CE 443: Wastewater Disposal 4
CE 444: Groundwater Hydrology (4) 4
CE 452: Introduction to Water Chemistry and Treatment 4

A student must complete all courses in either series A or B.

† Students may not take both CE 450 and CE 470 in fulfillment of civil engineering elective degree requirements.

‡ See ‘Arts and Letters Core’ on the first page of the College of Engineering section.

Total for the four years: 134 or 135 semester hours.

Civil Engineering Course Descriptions. The following course descriptions give the number and title of each course. Lecture hours per week and laboratory and/or tutorial hours per week and credits each semester are in parentheses.

235L. Mechanics of Solids/Materials Laboratory (0-3-2) Vichit-Vadakan
Corequisite: CE 236.
A laboratory course to complement CE 236 and CE 235: Mechanics of Solids. Experiments on behavior of deformable solids and simple structures, materials, constitution of solids, concrete mix design and wood testing.

236. Mechanics of Solids (3-0-3) Staff
Prerequisites: AME 225, MATH 225.
An introduction to the mechanics of deformable solids. Concepts in stress, strain, stability and deformation of simple structures are introduced.

242. Concepts in Civil Engineering Analysis (3-1-4) Silliman
Prerequisites: EG 112, CHEM 121, MATH 126.
Corequisite: PHYS 131.
An introduction to civil engineering and methods used in civil engineering with emphasis on structural engineering, bioengineering (pollution control) and water resources.

331. Stochastic Concepts in Engineering Planning and Design (3-0-3) Kirchner
Prerequisite: MATH 225.
Development of probabilistic concepts and simulation models and their relevance and application to real design and decision problems encountered in civil engineering. Fall.

336. Structural Mechanics I (3-0-3) Kareem
Prerequisite: CE 236.
Application of the principles of mechanics to the stress and deformation analysis of structural systems. Behavior and analysis of redundant structures. Fall.

344. Hydraulics (3-0-3) Westerink
Prerequisite: AME 334.

356. Structural Mechanics II (3-0-3) Kirchner
Prerequisite: CE 336.
Behavior and analysis of redundant structures. General principles and methods are developed and applied to a variety of structural systems typical of civil engineering. Matrix methods of structural analysis with computer applications. Spring.

430. Environmental Chemistry (3-0-3) Maurice
Prerequisite: Consent of instructor.
Application of acid-base, solubility, complex formation and oxidation reduction equilibria to water supply, wastewater treatment and natural environmental systems.
440. Transportation Engineering
(3-0-3) Staff
Prerequisite: Senior standing in engineering.
The planning, design, operation, safety and economics of transportation systems.

441. Numerical Methods in Engineering
(3-0-3) Westerink
Prerequisite: MATH 325.

442. Water Distribution and Wastewater Collection
(3-0-3) Ketchum
Prerequisite: AME 334.
Theory, analysis and design of pipe flow, sewer flow, storm and sanitary sewers, reservoirs and pumping facilities for water distribution and wastewater collection. Fall.

443. Wastewater Disposal
(3-0-3) Staff
Prerequisite: CE 344.
A study of the theory, design and operation of facilities both for industrial and municipal treatment and disposal. Design of municipal wastewater treatment systems is emphasized. Spring.

444. Groundwater Hydrology
(3-3-4) Silliman
Prerequisite: Senior standing in engineering.
Lectures and laboratory cover the fundamentals of flow and transport in porous media. Methods of analysis for development of groundwater resources.

445. Introduction to Geotechnical Engineering
(3-0-3) Salvati
Prerequisite: CE 236.
A lecture course covering the fundamentals of geotechnical and foundation engineering. Origin, identification and classification of soils. Principles of shearing resistance, deformation, consolidation and compaction. Fall.

450. Legal, Ethical, and Business Relations in Engineering
(3-0-3) Staff
Prerequisite: Senior standing in engineering.
Legal, ethical and business relations in the practice of professional engineering. Legal aspects of contracts, intellectual property, product and professional liability. Case studies in engineering ethics. Communications, organization and interpersonal skills. Fall.

452. Introduction to Water Chemistry and Treatment
(3-0-3) Staff
Prerequisites: CHEM 118, AME 334.
An introduction to water treatment design, including discussion of basic aquatic chemistry, water quality, environmental policy and current issues and problems in the industry.

453. Waste Disposal Management
(3-0-3) Staff
Corequisite: CE 442.
The handling and disposal of common chemical and biological residues (both solid and semisolid) from waste collection and treatment operations.

459. Advanced Mechanics of Solids
(3-0-3) Staff
Prerequisite: AME 238 or CE 236.
The course covers fundamental principles and techniques in stress analysis of trusses, beams, rigid frames, and thin-walled structures. Emphasis is placed on energy methods associated with calculus of variations. Fall.

460. Finite Elements in Structural Mechanics
(3-0-3) Kirkner
Prerequisite: CE 356 or consent of instructor.
Finite element methods for static and dynamic analysis of structural and continuum systems. Analysis of two- and three-dimensional solids as well as plates and shells. Introduction to nonlinear problems.

465. Foundations and Earth Structures
(3-0-3) Staff
Prerequisite: CE 445.
Application of basic engineering principles of soil mechanics in the design of foundations and earth structures, including deep excavation supports, shallow foundations, deep foundations and caissons. Spring.

466. Structural Steel Design
(3-0-3) Staff
Prerequisite: CE 356.
The application of design theory to structural steel systems. Emphasis on structural system design using basic design fundamentals for comparison with codes of practice. Spring.

470. Construction Management
(3-0-3) Staff
Prerequisite: Senior standing in engineering.
Engineering aspects of planning, economics, practices and equipment usage in construction of civil engineering projects. Use of critical path construction schedules. Spring.

473. Environmental/Engineering Design
(3-0-3) Staff
Prerequisite: Consent of instructor.
Application of physical, chemical and biological unit operations and processes to the functional designs of municipal water pollution control facilities. Fall.

476. Design of Structures to Resist Natural Hazards
(3-0-3) Kareem
Prerequisite: Consent of instructor.
Natural hazards and associated load effects on structures. Analysis of damage caused by wind storms, earthquakes and ocean waves. Design provisions to resist damage resulting from natural hazards.

486. Reinforced Concrete Design
(3-0-3) Kurama
Prerequisite: CE 336.
CIVIL ENGINEERING AND GEOLOGICAL SCIENCES

498. Special Studies
(V-V-V) Staff
Individual or small group study under the direction of a faculty member in an undergraduate subject not concurrently covered by any University course.

499. Undergraduate Research
(V-V-V) Staff
A research project at the undergraduate level under the supervision of a faculty member.

The following graduate courses, described in the Graduate School Bulletin of Information, are also open to advanced undergraduates with permission of the department chair.

525. Advanced Geostatistics
430/530. Environmental Chemistry
531. Introduction to Bioengineering
534. Design of Biological Waste Treatment Systems
537. Environmental Engineering Principles
538. Advanced Hydraulics
551. Fracture of Materials
554. Analytical Mechanics
556. Advanced Mechanics of Solids
563. Finite Elements in Engineering
564. Design of Timber Structures
565. Theory of Plates and Shells
569. Advanced Structural Dynamics
473/573. Environmental Engineering Design

* Courses having a 400/500 option will require additional work at the 500 level, i.e., semester project or paper.

Program in Environmental Geosciences. The Environmental Geosciences program at Notre Dame was founded by the Department of Civil Engineering and Geological Sciences to provide students with a quantitative preparation for professional careers or continued higher education in the disciplines of earth and environmental science. The program provides a foundation in the physical sciences, with emphasis on processes that occur near or at the surface of Earth, and the impact of human activity on such processes. Students explore the geochal, mineralogical, and hydrological properties of Earth's crust and develop an understanding of the interplay of natural processes such as mineral-rock-water-bacteria interactions, with anthropogenic issues such as transport of toxic heavy metals and safe disposal of nuclear waste.

The environmental geosciences program combines classroom, laboratory, and field studies. Students are encouraged to participate in a semester study abroad, such as the Australia program (during the fall semester, junior year), which provides additional opportunity for field-based studies. All students are encouraged to conduct independent research under faculty supervision during their senior year.

An undergraduate major in environmental geosciences prepares a student for graduate study (M.S., Ph.D.) in many aspects of geology and environmental sciences, as well as for admission to a variety of professional schools. In addition, this program meets the criteria for graduates to become state-registered geologists in states requiring such certification. Graduates with a B.S. degree may enter careers in a wide variety of areas, including the National Park Service, industry, environmental consulting, and government research laboratories. An environmental geosciences degree also is an ideal background for those planning to teach in secondary schools at all levels. Further details can be found at www.nd.edu/~envgeo.

The flexibility of our undergraduate program allows engineering and science students to major in environmental geosciences. Below you will find an example of the curriculum that can be followed by a student who commits to the College of Engineering. This is followed by an example of how a student committed to the College of Science also may take advantage of this major.

First Year of Studies
First-year students intending to major in environmental geosciences will find first-year requirements on the first page of the College of Engineering section.

Sophomore Year
First Semester
ENVG 231: Physical Geology + Lab 4
ENVG 242: Mineralogy 4
PHYS 132: Physics II 4
MATH 225: Calculus III 3.5

Second Semester
ENVG 232: Historical Geology 4
ENVG 247: Petrology 4
MATH 228: Linear Alg. Diff. Equations 3.5
Arts and Letters course3 3
Field Trip 1

Junior Year
First Semester
ENVG 357: Sediment and Stratigraphy 4
ENVG 403: Geochemistry 3
Arts and Letters course3 3
Free elective 3
Technical elective 3

Second Semester
ENVG 342: Str. Geology and Rock Mech. 4
MATH 214: Introductory Statistics 3
Arts and Letters course3 3
Field Trip 1

Senior Year
First Semester
ENVG 415: Env. Imp. Res. Utilization 3
ENVG 423: Environmental Geochemistry 3
CE 444: Groundwater Hydrology 4
Arts and Letters course3 3
Arts and Letters course3 3

Second Semester
ENVG 462: Environmental Mineralogy 3
ENVG 474: Water-Rock Interaction 3
ENVG 486: Geomicrobiology 3
Technical elective 3
Technical elective 3

Total for the four years: 126 semester hours.

For students in the College of Science wishing to major in the environmental geosciences, the curriculum is very similar, with the following differences, shown in italics:

First Year of Studies
First Semester
ENVG 131: Physical Geology + Lab 4
CHEM 117: General Chemistry I1 4
MATH 125: Calculus I1 4
Arts and Letters course3 3
FYC 110 3
Physical Education 0

Second Semester
ENVG 103: Environmental Geosciences 3
CHEM 116: General Chemistry II1 4
MATH 126: Calculus II1 4
PHYS 131: Physics I 4
Arts and Letters Course3 3
Physical Education 0

Sophomore Year
First Semester
Arts and Letters Course3 3
ENVG 242: Mineralogy 4
PHYS 132: Physics II 4
MATH 225: Calculus III 3.5

Second Semester
ENVG 342: Str. Geology and Rock Mech. 4
MATH 214: Introductory Statistics 3
Arts and Letters course3 3
Field Trip 1

From the spring semester of the sophomore year, the curriculum is the same as that listed above for students in the College of Engineering, except a technical elective is taken in place of an Arts and Letters course during the fall semester of the senior year. The total number of semester credit hours is the same.
Minor in Environmental Geosciences

A minor in Environmental Geosciences requires the completion of 23 credit hours in geological sciences as follows:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVG 131</td>
<td>Physical Geology + Lab</td>
<td>4</td>
</tr>
<tr>
<td>ENVG 232</td>
<td>Historical Geology</td>
<td>4</td>
</tr>
<tr>
<td>ENVG 242</td>
<td>Mineralogy</td>
<td>4</td>
</tr>
<tr>
<td>Field Trip</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Subtotal: 13

One of:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVG 247</td>
<td>Petrology</td>
<td>4</td>
</tr>
<tr>
<td>ENVG 342</td>
<td>Str. Geology and Rock Mech.</td>
<td>4</td>
</tr>
<tr>
<td>ENVG 357</td>
<td>Sediment. and Stratigraphy</td>
<td>4</td>
</tr>
</tbody>
</table>

Subtotal: 4

Two of:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVG 344</td>
<td>Surficial Proc. Surf. Hydrol.</td>
<td>3</td>
</tr>
<tr>
<td>ENVG 403</td>
<td>Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENVG 415</td>
<td>Env. Imp. Res. Utilization</td>
<td>3</td>
</tr>
<tr>
<td>ENVG 423</td>
<td>Environmental Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENVG/SC 459</td>
<td>Palentology</td>
<td>3</td>
</tr>
<tr>
<td>ENVG 462</td>
<td>Environmental Mineralogy</td>
<td>3</td>
</tr>
<tr>
<td>ENVG 474</td>
<td>Water-Rock Interaction</td>
<td>3</td>
</tr>
<tr>
<td>ENVG 486</td>
<td>Geomicrobiology</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal: 6

Total for the minor: 23 semester hours.

Notes:

1. CHEM 113, 115, OR 125 may be substituted for CHEM 117; CHEM 118 or 126 may be substituted for CHEM 116.
2. Technical electives are typically 300- and 400-level courses in science or engineering that have been approved by the chair of Civil Engineering and Geological Sciences. Students must ensure they have met prerequisite requirements for technical elective courses. Courses that may be used as technical electives include:
 - ENVG 458: Geophysics
 - ENVG 459: Palentology
 - ENVG 499: Undergraduate Research
 - CHEM 224: Elem. Organic Chem. II
 - CHEM 235: Organic Chemistry + Lab
 - CHEM 236: Organic Chemistry + Lab
 - CHEM 243: Inorganic Chemistry
 - CHEM 321: Physical Chemistry
 - CHEM 322: Physical Chemistry II
 - CHEM 333: Analytical Chemistry + Lab
 - CHEM 341: Fundamentals of Biochemistry
 - CHEM 420: Principles of Biochemistry
 - BIOS 153: Biological Sciences I
 - BIOS 156: Biological Sciences II
 - BIOS 201: General Biology I
 - BIOS 202: General Biology II
 - BIOS 401: Principles of Microbiology
 - ABE 225: Mechanics I
 - ABE 226: Mechanics II
 - ABE 334: Fluid Mechanics
 - CE 344: Hydraulics
 - CE 452: Int. Water Chem. and Treatment
 - CE 443: Wastewater Disposal
 - MATH 325: Differential Equations

3. University requirements include:
 - FYC 110
 - *Theology* 6 hours
 - *Philosophy* 6 hours
 - *History* 3 hours
 - *Social Science* 3 hours
 - *Fine Arts or Literature* 3 hours
 - *One of these courses must be a University Seminar* 180

4. If ENVG/SC 231 is a required course for a science major, it may also be counted for the minor in Environmental Geosciences.
5. The sequence MATH 165–166 is an acceptable substitute for MATH 125–126. Under special circumstances, MATH 119 may be an acceptable substitute for MATH 125.

SUMMARY OF REQUIREMENTS FOR GRADUATION FOR ENVIRONMENTAL GEO SCIENCES MAJOR

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Geosciences</td>
<td>47 (50)</td>
</tr>
<tr>
<td>Chemistry</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics</td>
<td>18</td>
</tr>
<tr>
<td>Physics</td>
<td>8</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>10 (4)</td>
</tr>
<tr>
<td>Technical Electives (science and engineering)</td>
<td>9 (12)</td>
</tr>
<tr>
<td>FYC 110</td>
<td>3</td>
</tr>
<tr>
<td>Philosophy</td>
<td>6</td>
</tr>
<tr>
<td>Theology</td>
<td>6</td>
</tr>
<tr>
<td>History</td>
<td>3</td>
</tr>
<tr>
<td>Social Science</td>
<td>3</td>
</tr>
<tr>
<td>Fine Arts or Literature</td>
<td>3</td>
</tr>
<tr>
<td>Free Electives</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDITS</td>
<td>126</td>
</tr>
</tbody>
</table>

Credits in parentheses refer to students in the College of Science.

131. Physical Geology

(3-2-4) Neal
Prerequisites: Open to engineering and science common core intents.
An introduction to the Earth and its processes, composition, evolution, and structure. The course introduces the student to mineralogy, petrology, structural geology, oceanography, surficial processes, geophysics, environmental geology, and planetology. Lecture and laboratory meetings.

231. Physical Geology

(3-2-4) Neal
Prerequisites: Open to engineering and science common core intents.
An introduction to the Earth and its processes, composition, evolution, and structure. The course introduces the student to mineralogy, petrology, structural geology, oceanography, surficial processes and environmental geology. Lecture and laboratory meetings.

232. Historical Geology

(3-2-4) Rigby
Prerequisites: ENVG 231 or consent of instructor.
This course introduces the student to the concept of geologic time, absolute and relative age-dating. Earth processes and features through time, and the major features of evolution and distribution of fossils. Lecture and laboratory meetings. A one-day field trip is required.
242. Mineralogy and Optical Mineralogy
(3-2-4) Burns
Prerequisites: CHEM 118, ENVG 231, or consent of instructor.
Crystallography and mineral optics—physical and chemical mineralogy—its application to mineral identification in hand-specimen and using the petrographic microscope.

247. Igneous and Metamorphic Petrology
(3-2-4) Neal
Prerequisites: ENVG 242 or consent of instructor.
Origin and identification of igneous and metamorphic rocks within a plate tectonic framework. Geochemistry and petrography are used to investigate mineral equilibria, magma generation and crystallization, pressure and temperatures of deformation, and the interior of the Earth.

342. Structural Geology and Rock Mechanics
(3-3-4) Staff
Prerequisites: ENVG 242 or consent of instructor.
Shapes and fabric of deformed rocks, physical properties of rocks, processes and mechanisms of deformation with associated stresses and strains, and regional and global structural events. A weekend field trip is required.

344. Surficial Processes and Surficial Hydrology
(2-3-3) Staff
Prerequisites: ENVG 242 or consent of instructor.
A quantitative study of natural chemical and physical processes (e.g., weathering, flooding, wind) that produce both erosional and depositional landforms. Their effects on human structures and developments are explored. A one-day field trip is required.

357. Sedimentation and Stratigraphy
(2-2-3) Rigby
Prerequisites: ENVG 242 or consent of instructor.
Sedimentary environments from a physical, biological and tectonic perspective are explored, along with processes such as lithification. Identification of sedimentary rocks and the interpretation of the succession of layered rocks in North America are emphasized.

403/503. Geochemistry
(3-0-3) Fein
Prerequisites: CHEM 116, 117; MATH 125, 126, or consent of instructor.
An introduction to the use of chemical thermodynamics and chemical kinetics in modeling geochemical processes. Special emphasis is placed on water-rock interactions of environmental interest.

415. Environmental Impact of Resource Utilization
(3-0-3) Neal
Prerequisites: ENVG 242, ENVG 403, or consent of instructor.
The environmental effects of utilizing natural resources are examined from their extraction, refining, to use. Pivotal in this course is environmental impact assessment and rehabilitation/remediation technologies. A number of case studies will be examined to highlight the environmental impact of using the Earth’s natural resources and how such impacts can be mitigated.

423. Environmental Geochemistry
(3-0-3) Maurice
Prerequisites: ENVG 403 or consent of instructor.
The fundamental controls on the chemical characteristics of natural waters as a basis for understanding local, regional, and global hydrobioc hemical cycles. Includes acid-base equilibria, solubility, complex formation, geochemistry of clays, and introduction to geochemical kinetics. Combines classical geochemical, engineering, and computer modeling approaches to carbonate system equilibria.

445. Field Trip
(0-2-1) Burns
Prerequisites: ENVG 231 or consent of instructor.
Field trip during the fall/spring vacation; emphasis on regional field geology and field relationships. Classic localities are studied in order to demonstrate geological concepts.

458. Geophysics
(2-2-3) Staff
Prerequisites: MATH 228, PHYS 132, or consent of instructor.
Physics of the solid Earth: seismic wave, gravity, resistivity and electromagnetic methods of probing the structure of the Earth. Applications to environmental concerns as well as to groundwater, mineral and petroleum exploration are discussed.

459. Paleontology
(2-2-3) Rigby
Prerequisites: ENVG 232 or consent of instructor.
The fossil record—morphology, taxonomy, evolution, statistical population systematics and paleoecology. A one-day field trip is required.

462. Environmental Mineralogy
(3-0-3) Burns
Prerequisites: ENVG 242 or consent of instructor.
This course explores the chemistry and structures of minerals with emphasis on environmental and technological issues. Topics of environmental significance include disposal of spent nuclear fuel, contamination of soils with heavy metals, and the remediation of mine tailings. Emphasis will be on the mineralogy of uranium, lead, mercury, iodine, selenium, and tellurium. Technological aspects of minerals, such as the use of zeolites and clay minerals as molecular sieves and as waste containment vessels, will be addressed.

474. Water-Rock Interactions
(3-0-3) Maurice
Prerequisites: ENVG 423 or consent of instructor.
Fundamental properties of mineral surfaces and of the mineral-water interface. Methods of surface and interface analysis. The electric double layer. Interface reactions including adsorption, mineral growth and dissolution, photoredox phenomena, and controls on bacterial adhesion.

486. Geomicrobiology
(3-0-3) Fein
Prerequisites: ENVG 403 or consent of instructor.
This course explores current research involving the interaction between microbes and geologic systems, focusing on the ability of microbes to affect mass transport in fluid-rock systems. Readings concentrate on laboratory, field, and modeling studies of environmental and/or geologic interest.

497. Directed Readings
(0-V-V) Staff
Prerequisites: Permission of the chair of the Department of Civil Engineering and Geological Sciences and the individual instructor.
Research of literature on a specific geoscience topic. Preparation of reports and presentations.

498. Special Studies
(V-V-V) Staff
Individual or small group study under the direction of a faculty member in an undergraduate subject not concurrently covered by any University course.

499. Undergraduate Research
(0-V-V) Staff
Prerequisites: Permission of the chair of the Department of Civil Engineering and Geological Sciences. Three to 15 hours each week, arranged individually for each student.

The following graduate courses, described in the Graduate School Bulletin of Information, are also open to advanced undergraduates with permission:

403/503: Geochemistry
519: Surface and Subsurface Geophysics
528: ICP Analytical Techniques
545: Biogeochemical Cycles
547: Geodynamics
568: Environmental Isotope Geochemistry
Computer Science and Engineering

Schubmehl/Prein Chair of Computer Science and Engineering:
Kevin W. Bowyer

Ted H. McCourteny Professor of Computer Science and Engineering:
Peter M. Kogge

Professors:
Steven C. Bass (emeritus); Danny Z. Chen; Eugene W. Henry (emeritus); John J. Uhran Jr.

Associate Professors:
Jay B. Brockman; Patrick Flynn; X. Sharon Hu

Assistant Professors:
Surendar Chandra; Vincent W. Freeh (visiting); Jesús A. Izaguirre; Menelaos Karavelas; Maria Michael (visiting); Lambert Schaelicke; Matthias Schertz; Aaron Striegel

Professional Specialist:
Gregory R. Madye

Associate Professional Specialist:
Ramzi K. Bualuan; J. Curt Freeland

Educational Goals. The goals of the programs in computer science and computer engineering are (1) to prepare all students for careers in the public or private sector, (2) to prepare outstanding students for graduate study, (3) to develop lifelong learning skills in all students, (4) to provide comprehensive education in computer science, including theoretical foundations, software and hardware systems, and applications, and (5) to ensure significant design experience including working in teams.

Program Outcomes. At the time of completion of the undergraduate program, all graduates should possess (1) the ability to specify, design, test, and document software, (2) an understanding of current computer software and hardware technology, (3) an understanding of science, engineering, and mathematics, (4) a comprehensive general education, (5) the ability to continue learning in response to professional needs as well as personal desire for self-improvement, and (6) an understanding of personal and professional responsibility to society.

Program of Studies. The Department of Computer Science and Engineering offers programs of study which lead to the degree of bachelor of science in computer science and engineering, and a Ph.D.

London Program. Students majoring in Computer Science and Computer Engineering may apply to spend the fall semester of their junior year in London. During their semester in London, students take courses offered by Notre Dame and British professors at Notre Dame’s London Centre near Trafalgar Square. The courses taken by the students are Notre Dame courses, and credits earned are Notre Dame credits. The students take two required engineering courses, one mathematics course, and two humanities elective courses so that they graduate with their class in the normal four years. Students participating in this program live as a group in residential facilities, with supervision provided by the University. The semester enables students to combine their engineering studies with an opportunity to live and travel in Britain. Detailed information on this program can be obtained from the department office in 384 Fitzpatrick Hall, Notre Dame, IN 46556; telephone (574) 631–8321; fax (574) 631–9260.

Programs. Programs in the Department of Computer Science and Engineering follow the four-year curricula listed below. These include required and elective courses in the basic, pure and applied sciences, as well as the humanities, electrical engineering, computer science and computer engineering. Emphasis is on developing a mastery of the key principles underlying the organization, operation, and application of modern computers to real problems, with a solid grounding in math and science to permit a quantitative analysis of such solutions. In addition, central to both programs is the development of the ability to function, both independently and in multidisciplinary teams, and to be prepared for continued change in future computing technology and what effects it will have on all aspects of society. Opportunities for specialization in several professional computer disciplines are available. Students are individually assisted and advised in their choices of elective courses.

- **Computer Science Program**
 - First Semester:
 - CSE 211: Fundamentals of Computing I 4
 - CSE 210: Discrete Mathematics 3
 - MATH 225: Calculus III 3.5
 - PHYS 132: General Physics II 4
 - Arts and Letters course* 3
 - Second Semester:
 - CSE 212: Fundamentals of Computing II 4
 - CSE 221: Logic Design 4
 - MATH 228: Introduction to Linear Algebra and Differential Equations 3.5
 - Technical Elective 3
 - Arts and Letters course* 3
 - Total: 17.5

- **Computer Engineering Program**
 - First Semester:
 - CSE 331: Data Structures 3
 - CSE 321: Computer Architecture I 4
 - EE 224: Introduction to Electrical Engineering 4
 - Free Elective 3
 - Arts and Letters course* 3
 - Junior Year:
 - CSE 331: Data Structures 3
 - CSE 321: Computer Architecture I 4
 - EE 224: Introduction to Electrical Engineering 4
 - Free Elective 3
 - Arts and Letters course* 3
 - Total: 17
Second Semester
- CSE 322: Computer Architecture II 4
- CSE 341: Operating System Principles 3
- EE 234: Electric Circuits 3
- MATH 323: Probability 3
- Arts and Letters course* 3
- **16**

Senior Year

First Semester
- EE 344: Signals and Systems I 3
- CSE Electives* 9
- Free Elective 3
- **15**

Second Semester
- CSE 475: Ethics and Professional Issues 3
- EE 242: Electronics I 4
- CSE Elective* 3
- Arts and Letters course* 3
- **13**

Total Program Credits:
- **130**

Computer Science Program:

Sophomore Year

First Semester
- CSE 211: Fundamentals of Computing I 4
- CSE 210: Discrete Mathematics 3
- MATH 225: Calculus III 3.5
- PHYS 132: General Physics II 4
- Arts and Letters course* 3
- **17.5**

Second Semester
- CSE 212: Fundamentals of Computing II 4
- CSE 221: Logic Design 4
- MATH 228: Introduction to Linear Algebra and Differential Equations 3.5
- Technical Elective 3
- Arts and Letters course* 3
- **17.5**

Junior Year

First Semester
- CSE 331: Data Structures 3
- CSE 321: Computer Architecture I 4
- CSE Elective* 3
- Technical Elective 3
- Arts and Letters course* 3
- **16**

Second Semester
- CSE 411: Automata 3
- CSE 341: Operating System Principles 3
- CSE Elective* 3
- MATH 323: Probability 3
- Arts and Letters course* 3
- **15**

Senior Year

First Semester
- CSE 413: Algorithms 3
- CSE Electives* 6
- Technical Elective 3
- Free Elective 3
- **15**

Second Semester
- CSE 475: Ethics and Professional Issues 3
- CSE Electives* 6
- Arts and Letters course* 3
- **12**

Total Program Credits:
- **127**

- See "Arts and Letters Core" on the first page of the College of Engineering section.

* These courses must be selected from a list approved by the department. For computer engineering, at least one must be a designated design course.

Course Descriptions

The following course descriptions give the number and title of each course. Lecture hours per week, laboratory and/or tutorial hours per week, and credits each semester are in parentheses.

210. Discrete Mathematics

(3-0-3) Maday

Prerequisite: CSE 232.

Introduction to mathematical techniques fundamental to computer engineering and computer science. Topics: mathematical logic, induction, set theory, relations, functions, recursion, recurrence relations, introduction to asymptotic analysis, algebraic structures, graphs, machine computation.

211. Fundamentals of Computing I

(3-1-4) Scheutz

Prerequisites: EG 111, EG 112.

This is the first part of a two-course introduction-to-computing sequence, intended primarily for Computer Science and Computer Engineering majors. It introduces fundamental concepts and principles of computer science, from formulating a problem and analyzing it conceptually, to designing, implementing, and testing a program on a computer. Using data and procedural abstractions as basic design principles for programs, students learn to define basic data structures, such as lists and trees, and to apply various algorithms for operating on them. The course also introduces object-oriented and parallel programming methods. The primary programming language used in this course is SCHEME.

212. Fundamentals of Computing II

(3-0-3) Iraguirre

Prerequisite: CSE 211.

This is the second part of a two-course introduction-to-computing sequence, intended primarily for Computer Science and Computer Engineering majors. This course introduces concepts and techniques for developing large software systems. The object-oriented model of design and programming is presented using a modern programming language such as Java or C++. Topics covered include modularity, specification, data abstraction, classes and objects, genericity, inheritance, subtyping, design patterns, testing, concurrency, object persistency, and databases.

221. Logic Design and Sequential Circuits

(3-3-4) Michael, Flynn

Boolean algebra and switching circuits, Karnaugh maps, design of combinational and of sequential logic networks, sequential machines.
232. Advanced Programming
(3-0-3) Bualuan
Prerequisites: EG 120, MATH 125.
Top-down analysis and structured programming. Basic analysis of algorithms, algorithm development, implementation and debugging and testing of programs will also be emphasized. Students will write several programs in the C++ language to learn the concepts taught and to acquire experience in solving problems using the UNIX operating system.

233. Functional Programming
(3-0-3) Scheutz
Prerequisite: CSE 232.
The focus in this course is on the effective use of the computer in problem solving. The student will learn how to formulate data and procedural abstractions and deal with the complexities of large software systems. As a vehicle for handling this complexity, the functional programming language scheme will be used.

321. Computer Architecture I
(3-3-4) Hu
Prerequisites: CSE 221, CSE 232.
Introduction to basic architectural concepts that are present in current scalar machines, together with an introduction to assembly language programming, computer arithmetic and performance evaluation. Commercial computer-aided-design software is used to deepen the student's understanding of the top-down processor design methodology. MIPS-based assembly language will be used.

322. Computer Architecture II
(3-3-4) Kogge
Prerequisites: CSE 321.
A continuation of the architectural concepts in CSE 321. Detailed study of processor design, hardwired and microprogrammed control, pipelining, memory organization, I/O and bus protocols, parallel processors. The course makes extensive use of commercial computer-aided-design tools and culminates with a major project of designing and simulating a complete microprocessor.

331. Data Structures
(3-0-3) Izaguirre
Prerequisite: CSE 210.
Fundamental techniques in the design and analysis of non-numerical algorithms and their data structures. Elementary data structures such as lists, stacks, queues; more advanced ones such as priority queues and search trees. Design techniques such as divide-and-conquer. Sorting and searching and graph algorithms.

341. Operating System Principles
(3-0-3) Madey, Schaelicke
Prerequisites: CSE 321.
Corequisite: CSE 322.
Introduction to all aspects of modern operating systems. Topics include process structure and synchronization, interprocess communication, memory management, file systems, security, I/O and distributed files systems.

346. Database Concepts
(3-0-3) Bualuan
Prerequisite: CSE 331.
Effective techniques in managing, retrieving and updating information from a database system. Focusing primarily on relational databases, the course presents the entity-relationship model, query processing and normalization. Topics such as relational calculus and algebra, integrity constraints, distributed databases and data security will also be discussed. A final project will consist of the design and implementation of a database system.

411. Automata
(3-0-3) Karavelas
Prerequisite: CSE 331.
The theory of automata and formal languages is developed along with applications. Various classes of automata, formal languages, and the relations between these classes are studied. Restricted models of computation; finite automata and pushdown automata; grammars and their relations to automata; parsing; turing machines; limits of computation; undecidable problems, the classes of P and NP.

413. Algorithms
(3-0-3) Chen
Prerequisite: CSE 331.
Techniques for designing efficient computer algorithms and for analyzing computational costs of algorithms. Common design strategies such as dynamic programming, divide-and-conquer, and Greedy methods. Problem-solving approaches such as sorting, searching and selection; lower bounds; data structures; algorithms for graph problems; geometric problems; and other selected problems. Computationally intractable problems (NP-completeness). Parallel algorithms.

422. Computer System Design
(3-0-3) Hu
Prerequisite: CSE 322.
Integrated hardware and software development, construction and test of digital systems by design teams to meet specifications subject to technical, economic and environmental constraints.

431. Programming Languages
(3-0-3) Kogge
Prerequisite: Familiarity with a standard programming language.
An introduction to modern computing concepts and computational models as embodied in a number of different classes of languages. These include (1) functional-based languages such as Lisp, Scheme, SASL, ML; (2) logic-based languages such as Prolog, Parlog, Strand, OPS; and (3) object-oriented languages such as Smalltalk, C++, Java.

432. Software Engineering
(3-0-3) Schaelicke
Prerequisites: CSE 331, CSE 341.
A comprehensive course about the methodologies required to control the complexity involved in the development of large software systems. Students are given the opportunity to practically apply software engineering techniques taught in this course through several medium-size programming problems and one large-scale development project. Emphasis is on the use of requirements and prototyping for design and software reliability, reuse and development management.

443. Compilers
(3-0-3) Staff
An introduction to the fundamental techniques and tools used in compiler construction. Topics include high-level language specification via context-free grammars; lexical analysis; parsing techniques such as top-down, bottom-up, and LR parsing; run-time environments; and code generation.

444. Introduction to Systems Administration
(3-0-3) Freeland
An introduction to the concepts and practices of computer system administration, including software management, system device management, system security, management of system services, disaster planning and disaster recovery.

456. Data Networks
(3-0-3) Staff
Prerequisite: Fundamental probability theory.
Introduction of fundamental concepts of data networks in terms of the ISO-layered architecture. Functions that occur at the various levels are explored. Topics include local area networks such as Ethernet and Token Ring networks, proposals for wide and metropolitan area networks such as FDDI and DQDB, and the eventual integration of data communications into a single network under ISDN (Integrated Services Digital Network) and Broadband ISDN.

458. Network Management
(3-0-3) Freeland
An introduction to the concepts and practices of computer network management, including network installation, monitoring and troubleshooting.

462. VLSI Circuit Design
(3-0-3) Brockman
Prerequisites: CSE 221, EE 242.
CMOS devices and circuits, scaling and design rules, floor planning, data and control flow, synchronization and timing. Individual design projects.

466. Computer Graphics
(3-0-3) Flynn
Prerequisites: Linear algebra, high-level language.
471. Introduction to Artificial Intelligence
(3-0-3) Scheutz, Flynn
Prerequisite: Advanced standing in engineering or science.
Evaluation of the areas that make up artificial intelligence today. Development of various representations commonly used. Differences between knowledge bases and databases are explored. A study of several applications including expert systems.

472. Introduction to Neural Networks
(3-0-3) Scheutz
Prerequisite: Advanced standing in engineering or science.
A study of the origin of artificial networks and their relationship to the biological world. An evaluation of four basic network structures: their properties, mathematical descriptions and applications.

475. Ethical and Professional Issues
(3-0-3) Bowyer
This course seeks to develop a solid foundation for reasoning about the difficult ethical, professional, and social controversies that arise in the computing field. Emphasis is placed on identifying the appropriate legal and professional context and applying sound critical thinking skills to a problem. Topics covered include relevant professional codes of ethics, encryption/privacy/surveillance, freedom of speech, “cracking” of computer systems, development of safety-critical software, whistleblowing, and intellectual property. This course relies heavily on case study of real incidents, both historical and current.

498. Special Studies
(V-V-V) Staff
Individual or small group study under the direction of a CSE faculty member in an undergraduate subject not currently covered by any University course.

499. Undergraduate Research
(V-V-V) Staff
A research project at the undergraduate level under the supervision of a CSE faculty member.

Electrical Engineering

Chair:
Yih-Fang Huang
H.C. and E.A. Brousy Professor of Electrical Engineering
Panagiotis J. Antsaklis
Leonard Bettez Chair of Electrical Engineering in Communications:
Daniel J. Costello Jr.
Frank M. Freimann Professor of Electrical Engineering (emeritus):
Ruey-wen Liu
Frank M. Freimann Professor of Electrical Engineering:
James L. Merz
Frank M. Freimann Professor of Electrical Engineering (emeritus):
Anthony N. Michel
Frank M. Freimann Professor of Electrical Engineering:
Wolfgang Porod
Frank M. Freimann Professor of Electrical Engineering:
Michael K. Sain

Professors:
Peter H. Bauer; Gary H. Bernstein; William B. Berry (emeritus); Oliver M. Collins; Thomas E. Fuja; Eugene W. Henry (emeritus); Yih-Fang Huang; Joseph C. Hogan (emeritus); Craig S. Lent; Alan C. Seaborg; Robert L. Stevenson; John J. Uhran Jr.

Associate Professors:
Patrick J. Fay; Garabet J. Gabriel (emeritus); Douglas C. Hall; Thomas H. Kosel; Michael D. Lemmon; Ken D. Sauer; Gregory L. Snider

Assistant Professors:
Martin Haenggi; John B. Kenney (adjunct); J. Nicholas Laneman

Research Associate Professor:
Alexander Mintairov; Alexei Orlov

Professional Specialist:
R. Michael Schafer

Assistant Professional Specialist:
John Orr

Concurrent Faculty:
Kevin Bowyer; Jay Brockman; Joachim Rosenthal

Statement of Goal and Objectives. The goal of the Department of Electrical Engineering's academic programs is to provide quality education and foster leading-edge research as a means of training highly qualified engineers and leaders of tomorrow, in keeping with the mission of the University of Notre Dame. The educational objectives through which this goal is met are:

• a thorough foundation for each graduate in basic scientific and mathematical knowledge, and in skills appropriate for practice in the field of electrical engineering immediately after graduation and well into the future.

• preparation of electrical engineering students for graduate and professional degree programs.

• breadth in education preparing graduates for adaptation to varied career paths and changing professional landscapes.

Program of Studies. The Department of Electrical Engineering offers programs of study that lead to the degrees of bachelor of science and master of science in electrical engineering and doctor of philosophy. The program leading to the bachelor of science degree is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

London Program. Students majoring in Electrical Engineering may apply to spend the fall semester of their junior year in London. During their semester in London, students take courses offered by Notre Dame and British professors at Notre Dame’s London Centre near Trafalgar Square. The courses taken by the students are Notre Dame courses, and credits earned are Notre Dame credits. The students take two required engineering courses, one mathematics course and two humanities elective courses so that they graduate with their class in the normal four years. Students participating in this program live as a group in residential facilities, with supervision provided by the University. The semester enables students to combine their engineering studies with an opportunity to live and travel in Britain. Detailed information on this program can be obtained from the department office in 275 Fitzpatrick Hall, Notre Dame, IN 46556; telephone (574) 631–5480; fax (574) 631–4393.

Program in Electrical Engineering. The four-year curriculum, listed below, includes required and elective courses in the pure and applied sciences, the humanities and electrical engineering. Emphasis is on the mastery of fundamental principles, with added depth and provision for specialization in the following major professional areas of communications, control systems, electronic circuits, design and analysis, microelectronics and integrated circuits, fabrication, photonics, and signal processing.

Students are individually assisted and advised in their choices of elective courses. Departmental facilities include laboratories for electronics, circuits, electrophysics, control systems, communications, integrated circuit fabrication and photonics. State-of-the-art computers are available for use in all classes.

Further details about the electrical engineering program may be found on the World Wide Web at www.nd.edu/~ee.

First Year of Studies
First-year students intending to major in electrical engineering when they become sophomores will find first-year course requirements on the first page of the College of Engineering section.

Sophomore Year

First Semester
MATH 225: Calculus III 3.5
PHYS 132: General Physics II 4
CSE 232: Advanced Programming 3
EE 224: Introduction to Electrical Engineering 4
Arts and Letters course* 3

*17.5
Junior Year

First Semester
- MATH 325: Differential Equations
- EE 344: Signals and Systems I
- EE 347: Semiconductors I
- EE 348: Electromagnetic Fields and Waves I
- Arts and Letters course†

Second Semester
- MATH 323: Probability
- Electrical Engineering Electives*
- Technical Elective*
- Arts and Letters course†

Senior Year

First Semester
- EE 430: Senior Design I
- Electrical Engineering Electives*
- Engineering Science Elective*
- Arts and Letters course†

Second Semester
- EE 440: Senior Design II
- Electrical Engineering Electives*
- Technical Elective*
- Arts and Letters course†

Total for four years: 128.5 semester hours.

*At least one electrical engineering elective must be chosen from EE 342, 446, 455, 458, and 468.

†See Arts and Letters Core on the first page of the College of Engineering section.

Course Descriptions

234. Electric Circuits
(3-0-3) Sain
Prerequisites: EE 224.
Corequisites: MATH 228.
Analysis of first, second, and higher order circuits, including natural response, forced response, phasor concepts, AC methods, frequency response, and Laplace transform techniques.

242. Electronics I
(3-3-4) Stevenson
Prerequisites: EE 222 or 224.

330. Principles of Engineering Design
(1-0-1) Schaefer
This course introduces the student to the principles of design. Through a series of lectures and projects, students will learn effective methods for taking potential products from concept to production. Spring.

342. Electrodynamics II
(3-3-4) Fay
Prerequisite: EE 242.
Fundamentals of transistor integrated circuit design, including frequency response, feedback, stability, and frequency compensation with application to operational amplifiers, phase-locked loops, and AM/FM transmission and reception. Includes laboratory. Spring.

344. Signals and Systems I
(3-0-3) Haenggi
Prerequisites: EE 234, MATH 228.
Behavior of linear systems in both time- and transform-domain representations; convolution integrals and summations, Fourier series signal expansions, Fourier and Laplace transform analysis of linear systems; discrete time Fourier transforms. Fall.

347. Semiconductors I: Fundamentals
(3-0-3) Hall
Prerequisites: PHYS 231, MATH 228.
An introduction to solid-state electronic devices, presenting the basis of semiconductor materials, conduction processes in solids, and other physical phenomena fundamental to the understanding of transistors, optoelectronic devices and silicon integrated circuit technology. Fall.

348. Electromagnetic Fields and Waves I: Fundamentals
(3-0-3) Seabaugh
Prerequisites: EE 234, PHYS 231.
A basic course in electromagnetic field theory. Using Maxwell's equations as the central theme. Vector analysis is employed extensively. Fall.

354. Signals and Systems II
(3-0-3) Laneman
Prerequisite: EE 344.
Linear systems analysis with emphasis on discrete time case: sampling theory, discrete Fourier transform, Z-transform, applications in signal processing, communications and control. Spring.

357. Semiconductors II: Devices
(3-0-3) Porod
Prerequisite: EE 347.
Applications of transport phenomena in semiconductors to explain the terminal behavior of a variety of modern electronic devices such as bipolar junction transistors, MOS structures and field effect transistors. Spring.

358. Electromagnetic Fields and Waves II: Applications
(3-0-3) Lent
Prerequisite: EE 348.
Propagation of traveling waves along transmission lines: transient waves, steady-state sinusoidal time and space variations. Wave equations for unbounded media and in wave guides. Spring.

372. Electric Machinery and Power Systems
(3-0-3) Sauer
Prerequisite: EE 348 or consent of instructor.
Introduction to electric power systems and electromechanical energy conversion, including generators, transformers, three-phase circuits, AC and DC motors, transmission lines, power flow and fault analysis. Spring.

430. Senior Design I
(0-6-2) Schaefer
The first part of a yearlong senior design project. In this part, students will choose a project, develop the paper design, plan the implementation and purchase necessary materials. Fall.

440. Senior Design II
(0-6-2) Schaefer
The second part of a yearlong senior design project. In this part, students implement, test and document their senior project. Spring.

446. IC Fabrication Laboratory
(2-6-4) Snider
This course introduces the student to the principles of integrated circuit fabrication. Photolithography, impurity deposition and redistribution, metal deposition and definition, and other topics. Students will fabricate a 550 gate (2500 transistor) CMOS LSI circuit. Fall.

452. Energy Analysis and Diagnostics
(3-0-3) Berry

453. Communication Systems
(3-0-3) Collins
Prerequisites: MATH 323, EE 354.
An introduction to the generation, transmission and detection of information-bearing signals. Analog and digital modulation techniques including AM, FM, PSK, QAM, and PCM. Time and frequency division multiplexing. Fall.

455. Control Systems
(3-3-4) Antsaklis
Prerequisites: EE 354, MATH 325.
Design of linear feedback control systems by state-variable methods and by classical root locus, Nyquist, Bode and Routh-Hurwitz methods. Fall.
456. Data Networks
(3-0-3) Kenney/Schafer
Prerequisite: Fundamental probability theory.
Introduction of fundamental concepts of data networks in terms of the ISO-layered architecture. Functions that occur at the various levels are explored. Topics include local area networks such as Ethernet and Token Ring networks, proposals for wide and metropolitan-area networks such as FDDI and DQDB, and the eventual integration of data communications into a single network under ISDN (Integrated Digital Services Network) and Broadband ISDN.

458. Microwave Circuit Design and Measurements Laboratory
(2-3-3) Fay
Prerequisite: EE 358 or consent of instructor.
This course is an introduction to microwave circuit design and analysis techniques, with particular emphasis on applications for modern microwave communication and sensing systems. An integrated laboratory experience provides exposure to fundamental measurement techniques for device and circuit characterization at microwave frequencies. Students will develop an enhanced understanding of circuit design and analysis principles as applied to modern microwave circuits, as well as become familiar with design techniques for both hand analysis and computer-aided design. An appreciation for basic measurement techniques for characterization of microwave devices, circuits and systems through laboratory experiments will also be developed. Fall.

462. VLSI Circuit Design
(3-0-3) Brockman
Prerequisites: CSE 221, EE 242.
CMOS devices and circuits, scaling and design rules, floor planning, data and control flow, synchronization and timing. Individual design projects.

464. Introduction to Neural Networks
(3-0-3) Uhran
Prerequisite: Advanced standing in engineering or science.
A study of the origin of artificial networks and their relationship to the biological world. An evaluation of four basic network structures and their properties, mathematical descriptions and applications.

465. Space Systems and Analysis
(3-0-3) Collins
Missions, spacecraft dynamics, attitude determination and control, space environment, spacecraft power, telecommunications, avionics, data handling/processing, and other topics that may include configuration, load determination and structure, and thermal control.

466. Topics in Electronic Transport Theory
(3-0-3) Porod
Prerequisite: EE 357.

468. Modern Photonics Laboratory
(2-3-3) Hall
A hands-on overview of the important role of photons alongside electrons in modern electrical engineering. Photonics technologies studied include lasers, optical fibers, integrated optics, optical signal processing, holography, optoelectronic devices and optical modulators. A survey of the properties of light, its interactions with matter, and techniques for generating, guiding, modulating and detecting coherent laser light. Spring.
471. Digital Signal Processing
(3-0-3) Hazeggi
Prerequisite: EE 354 and MATH 323.

476. Electronic Properties of Materials
(3-0-3) Kosel
Prerequisite: EE 347 or equivalent.

486. Digital and Analog Integrated Circuits
(3-0-3) Snider
Prerequisites: EE 342, EE 357.
Device-level operation of digital and analog integrated circuits. Covers the elements of silicon bipolar and MOS logic, GaAs logic, and volatile and nonvolatile memory. Topics in analog ICs include the design of transistors optimized for particular applications such as high bandwidth, AC and DC analysis of analog circuits, and subcircuits used in analog ICs. Design issues.

498. Special Studies
(V-V-V) Staff
Individual or small group study under the direction of a faculty member in an undergraduate subject not concurrently covered by any University course.

499. Undergraduate Research
(V-V-V) Staff
A research project at the undergraduate level under the supervision of a faculty member. The following graduate courses, described in the Graduate School Bulletin of Information, are also open to advanced undergraduates with permission of the department chair.

550. Linear Systems
551. Mathematical Programming
553. Advanced Digital Communications
554. Computer Communication Networks
555. Multivariable Control Systems
556. Fundamentals of Semiconductor Physics
558. Microwave Theory
561. Multi-Dimensional Signal Processing
563. Random Variables and Stochastic Processes
566. Solid State Devices
568. Electromagnetic Theory I
571. Statistical Signal Processing
576. Submicron Fabrication Techniques
580. Nonlinear Control Systems
581. Digital Image Processing

Interdepartmental Engineering

COURSE DESCRIPTIONS

The engineering course description is used for courses whose teaching responsibility rests with two or more departments of the College of Engineering. The descriptions give the number and title of each course. Lecture hours per week, laboratory and/or tutorial hours per week and credits each semester are in parentheses.

111. Introduction to Engineering Systems I
(3-0-3) Staff
Prerequisite: First-year standing.
The first of a two-part sequence intended to introduce engineering to First Year intents and to establish a foundation for their studies in any of the engineering disciplines. Team-oriented design projects are used to provide a multidisciplinary view of engineering systems and to present the engineering method. Structured programming is introduced, and computing skills are developed for engineering analysis, synthesis and technical communication.

112. Introduction to Engineering Systems II
(3-0-3) Staff
Prerequisite: First-year standing.
The second of a two-part sequence intended to continue the introduction of First Year intents to the engineering disciplines. Multidisciplinary projects are used to illustrate the application of engineering modeling, analysis and design principles to solve a variety of practical problems. The projects are intended to span areas of interest in all departments of the College of Engineering. Structured programming and software skills are further developed.

200. EPICS: Engineering Projects in Community Service
(V-V-V) Staff
Prerequisite: Sophomore standing.
A course that partners teams of students with local community service organizations. Projects involve strong technical content, significant design, and interdisciplinary effort and a strong communication component.

300. EPICS: Engineering Projects in Community Service
(V-V-V) Staff
Prerequisite: Junior standing.
A course that partners teams of students with local community service organizations. Projects involve strong technical content, significant design, and interdisciplinary effort and a strong communication component.

421. Integrated Engineering and Business Fundamentals
(3-0-3) Dunn
Prerequisite: Junior or senior standing.
The course is designed to improve the effectiveness of engineers work in corporations by teaching how and why businesses operate. Subjects covered include business financial reporting, human resource processes, management, the development processes, project management, the supply chain, and a history of quality topics. Numerous guest speakers are utilized to give the students exposure to successful business executives and reinforce the business processes covered in class.

422. Advanced Integrated Engineering and Business Topics
(3-0-3) Dunn
Prerequisite: EG 421.
The second course in the sequence integrates the elements taught in the fundamentals course. Subjects covered include a team-oriented Web-based business simulation exercise, building a successful plan, effective communications, and a review of leading edge trends in modern corporations.
Dual Degree Programs

DUAL DEGREE PROGRAM WITH THE COLLEGE OF ARTS AND LETTERS

Program of Studies. The dual degree five-year program between the College of Arts and Letters and the College of Engineering enables the student to acquire degrees from both colleges—the bachelor of arts from the College of Arts and Letters and the bachelor of science degree in a chosen program of the College of Engineering.

This combination program, instituted in 1952, offers students the advantages of both a liberal and a technical education. The student completing one of these combination programs has a background in the humanities and social sciences as well as a degree from one of the programs offered by the College of Engineering. Because it is a demanding program, only those students who have both the aptitude and motivation necessary for the five-year program should apply. Advisors for the program are available for consultation about the advisability of entering the program and about meeting the particular needs of each student pursuing this program. Qualified students are eligible to receive modest scholarship support from the John J. Reilly Endowed Scholarship program during their fifth year of study.

The decision to enter the program ordinarily should be made prior to beginning studies in the first year of studies, although students can also enter the program at a later stage. There are three sets of requirements which must be met by the program: University requirements, Arts and Letters requirements, and those of the College of Engineering, as the following table indicates.

University Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philosophy</td>
<td>6</td>
</tr>
<tr>
<td>Theology</td>
<td>6</td>
</tr>
<tr>
<td>Composition</td>
<td>3</td>
</tr>
<tr>
<td>University Seminar†</td>
<td>(3)</td>
</tr>
<tr>
<td>History</td>
<td>3</td>
</tr>
<tr>
<td>Social Science</td>
<td>3</td>
</tr>
<tr>
<td>Literature or Fine Arts</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (MATH 125, 126)</td>
<td>8</td>
</tr>
<tr>
<td>Natural Science (CHEM 121, 122)</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
</tr>
</tbody>
</table>

Arts and Letters Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL 211, 212</td>
<td>6</td>
</tr>
<tr>
<td>Literature or Fine Arts*</td>
<td>3</td>
</tr>
<tr>
<td>History or Social Science</td>
<td>3</td>
</tr>
<tr>
<td>Language**</td>
<td>6/9</td>
</tr>
<tr>
<td>Major (minimum)</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>42/45</td>
</tr>
</tbody>
</table>

Engineering Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 225, 228</td>
<td>7</td>
</tr>
<tr>
<td>PHYS 131, 132</td>
<td>8</td>
</tr>
<tr>
<td>EG 111, 112</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
</tr>
</tbody>
</table>

Schematic Program of Studies

First Semester

- FYC 110: Composition 3
- History/Social Science* 3
- MATH 125: Calculus I 4
- CHEM 121: General Chemistry: Fundamental Principles 4
- EG 111: Introduction to Engineering Systems I 3
- Physical Education 4
- **Total:** 17

Second Semester

- University Seminar+ 3
- PHYS 131: General Physics I 4
- MATH 126: Calculus II 4
- CHEM 122: General Chemistry: Biological Processes 3
- EG 112: Introduction to Engineering Systems II 3
- Physical Education 4
- **Total:** 17

Third Semester

- Theology/Philosophy 3
- Modern Language 3
- PHYS 132: General Physics II 4
- MATH 225: Calculus III 3.5
- AL 211: Ideals, Values and Images 3
- Engineering Program† 3
- **Total:** 19.5

Fourth Semester

- Theology/Philosophy 3
- AL 212: Ideals, Values and Images 3
- Modern Language 3
- MATH 228: Linear Algebra and Differential Equations 3.5
- Engineering Program† 3
- Engineering Program 3
- **Total:** 18.5

Fifth Semester

- Philosophy/Theology 3
- History/Social Science 3
- Engineering Program 3
- Arts and Letters Major† 3
- Engineering Program 3
- **Total:** 18

Sixth Semester

- Philosophy/Theology 3
- Arts and Letters Major 3
- Arts and Letters Major 3
- Engineering Program 3
- Engineering Program 3
- **Total:** 18

Seventh Semester

- Literature* 3
- History/Social Science 3
- Engineering Program 3
- Engineering Program 3
- Engineering Program 3
- **Total:** 18

Eighth Semester

- Fine Arts* 3
- Engineering Program 3
- Engineering Program 3
- Engineering Program 3
- **Total:** 18

Ninth Semester

- Engineering Program 3
- Engineering Program 3
- Engineering Program 3
- Arts and Letters Major 3
- Arts and Letters Major 3
- **Total:** 18

Tenth Semester

- Engineering Program 3
- Engineering Program 3
- Arts and Letters Major 3
- Engineering Program 3
- **Total:** 15
The dual degree program is open only to those currently enrolled Notre Dame students who have completed three years of a degree program in the College of Engineering. Students interested in making application for the M.B.A./engineering program should apply to the M.B.A. program during their junior year. To facilitate the application process, students should take the Graduate Management Admission Test (GMAT) either in June following their sophomore year or in October during the fall semester of their junior year.

An applicant who is not admitted to the dual degree engineering/M.B.A. program continues in the undergraduate engineering program and completes his or her undergraduate engineering program in the usual four-year timeframe. As a general guide, it is expected that a student accepted to this program will take two courses required for the undergraduate degree during the summer session following the junior year. The following schedule of classes is an example of how a program might be accomplished.

First Year, Sophomore Year, Junior Year:

As outlined for individual engineering degree programs in this Bulletin. 98–104 credit hours.

Summer Session Following Junior Year:

<table>
<thead>
<tr>
<th>Arts and Letters course*</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Letters course*</td>
<td>3</td>
</tr>
<tr>
<td>MBA 503: Excel Workshop**</td>
<td>0</td>
</tr>
<tr>
<td>MBA 504: Career Development**</td>
<td>0</td>
</tr>
</tbody>
</table>

Senior Year

First Semester

<table>
<thead>
<tr>
<th>MGT 500: Statistics</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN 510: Microeconomics*</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 500: Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MARK 500: Marketing Management</td>
<td>3</td>
</tr>
<tr>
<td>MBA 500: Management Communication I</td>
<td>1.5</td>
</tr>
<tr>
<td>Engineering courses</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>FIN 500: Financial Management</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN 515: Global Macroeconomic Environment</td>
<td>3</td>
</tr>
<tr>
<td>MGT 515: Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>MBA 501: Management Communication II</td>
<td>1.5</td>
</tr>
<tr>
<td>Engineering courses</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Fifth Year

First Semester

FIN 510: Microeconomic Analysis	3
MGT 510: Organizational Behavior	3
Business Ethics Elective	3
International Business Elective	3
Engineering courses	6
Total	18

Second Semester

<table>
<thead>
<tr>
<th>MGT 519: Corporate Strategy</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.B.A. Electives</td>
<td>12</td>
</tr>
<tr>
<td>Engineering course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

DUAL DEGREE PROGRAM WITH THE MENDOZA COLLEGE OF BUSINESS

Program of Studies. The dual degree five-year program between the Mendoza College of Business and the College of Engineering enables the student to earn the bachelor of science in a chosen field of the College of Engineering and the master of business administration.

This program, instituted in 1991, offers students the opportunity to better integrate study in engineering and in management. The student completing this program has a background in the management sciences, as well as the first professional degree in one of the fields of engineering. Because it is a demanding program, only those students of superior scholastic ability, who have both the aptitude and motivation necessary for the combined graduate and undergraduate program, should apply. Advisors for the program are available for consultation about the advisability of applying for the program and about meeting the particular needs of each student pursuing this program.

This program is open only to those currently enrolled Notre Dame students who have completed three years of a degree program in the M.B.A. program. The dual degree M.B.A./engineering program continues in the usual four-year timeframe. As a general guide, it is expected that a student accepted to this program will take two courses required for the undergraduate degree during the summer session following the junior year. The following schedule of classes is an example of how a program might be accomplished.

First Year, Sophomore Year, Junior Year:

As outlined for individual engineering degree programs in this Bulletin. 98–104 credit hours.

Summer Session Following Junior Year:

<table>
<thead>
<tr>
<th>Arts and Letters course*</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Letters course*</td>
<td>3</td>
</tr>
<tr>
<td>MBA 503: Excel Workshop**</td>
<td>0</td>
</tr>
<tr>
<td>MBA 504: Career Development**</td>
<td>0</td>
</tr>
</tbody>
</table>

Senior Year

First Semester

<table>
<thead>
<tr>
<th>MGT 500: Statistics</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN 510: Microeconomics*</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 500: Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MARK 500: Marketing Management</td>
<td>3</td>
</tr>
<tr>
<td>MBA 500: Management Communication I</td>
<td>1.5</td>
</tr>
<tr>
<td>Engineering courses</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>FIN 500: Financial Management</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN 515: Global Macroeconomic Environment</td>
<td>3</td>
</tr>
<tr>
<td>MGT 515: Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>MBA 501: Management Communication II</td>
<td>1.5</td>
</tr>
<tr>
<td>Engineering courses</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Fifth Year

First Semester

FIN 510: Microeconomic Analysis	3
MGT 510: Organizational Behavior	3
Business Ethics Elective	3
International Business Elective	3
Engineering courses	6
Total	18

Second Semester

<table>
<thead>
<tr>
<th>MGT 519: Corporate Strategy</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.B.A. Electives</td>
<td>12</td>
</tr>
<tr>
<td>Engineering course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

* The University Seminar may be selected from an appropriate history, social science, fine arts or literature course, or the first course in theology or philosophy.

* The University degree requirement is one course in literature or fine arts. The College of Arts and Letters requires a minimum of one course in each subject area, plus one additional course in history or social science.

** Two courses in the intermediate or advanced series complete the requirement. Beginning or elementary series require three semesters’ work to fulfill the language requirement.

† Courses specified by the student’s major engineering department. Minimum total for the five-year program to fulfill degree requirements in both colleges is 167 to 177 credit hours.

‡ Courses necessary to fulfill the requirements for a major in the student’s major arts and letters department.

Officers of Administration

In the College of Engineering

FRANK P. INCROPERA, Ph.D.
Matthew M. McCloskey Dean of the College of Engineering

JOHN J. UHRAN JR., Ph.D.
Senior Associate Dean of the College of Engineering

PETER M. KOEGE, Ph.D.
Associate Dean of the College of Engineering

STEPHEN E. SILLIMAN, Ph.D.
Associate Dean of the College of Engineering

ROBERT J. CUNNINGHAM, B.S.E.E., M.B.A.
Director of Budget and Operations

STEPHEN M. BATILL, B.S.E.E., M.B.A.
Chair of the Department of Aerospace and Mechanical Engineering

MARK J. MCCRADDY, Ph.D.
Chair of the Department of Chemical and Biomolecular Engineering

PETER C. BURNS, Ph.D.
Chair of the Department of Civil Engineering and Geological Sciences

KEVIN W. BOWYER
Chair of the Department of Computer Science and Engineering

YIH-FANG HUANG, Ph.D.
Chair of the Department of Electrical Engineering

Officers of Administration
Advisory Council

<table>
<thead>
<tr>
<th>Name</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN G. BREEN</td>
<td>Shafer Heights, Ohio</td>
</tr>
<tr>
<td>PATRICK J. BRENNAN</td>
<td>Towson, Maryland</td>
</tr>
<tr>
<td>WENDELL F. BEUCHE</td>
<td>Chicago, Illinois</td>
</tr>
<tr>
<td>THOMAS DEGNAN JR.</td>
<td>Moorestown, New Jersey</td>
</tr>
<tr>
<td>GERALD G. DEHNER</td>
<td>Fort Wayne, Indiana</td>
</tr>
<tr>
<td>LUINO DELLOSSO JR.</td>
<td>Mercer Island, Washington</td>
</tr>
<tr>
<td>LEO A. DILLING</td>
<td>Potomac, Maryland</td>
</tr>
<tr>
<td>DONALD K. DORINI</td>
<td>Fort Lauderdale, Florida</td>
</tr>
<tr>
<td>WILLIAM E. DOTTERWEICH</td>
<td>Fort Wayne, Indiana</td>
</tr>
<tr>
<td>DENNIS O. DOUGHTY</td>
<td>McLean, Virginia</td>
</tr>
<tr>
<td>ANTHONY F. EARLEY JR.</td>
<td>Detroit, Michigan</td>
</tr>
<tr>
<td>FRANKLIN E. ECK</td>
<td>Columbus, Ohio</td>
</tr>
<tr>
<td>EDWARD B. FITZPATRICK JR.</td>
<td>Mineola, New York</td>
</tr>
<tr>
<td>CELESTE VOLZ FORD</td>
<td>Portola Valley, California</td>
</tr>
<tr>
<td>DONALD L. GOTHARD</td>
<td>Washington, Michigan</td>
</tr>
<tr>
<td>VICENT N. GREGGO</td>
<td>Wilmington, Delaware</td>
</tr>
<tr>
<td>THOMAS J. HESSERT</td>
<td>Haddonfield, New Jersey</td>
</tr>
<tr>
<td>JAMES H. HUNT JR.</td>
<td>McLean, Virginia</td>
</tr>
<tr>
<td>CONRAD D. JAMES</td>
<td>Ibaca, New York</td>
</tr>
<tr>
<td>JOSEPH W. KEATING</td>
<td>Short Hills, New Jersey</td>
</tr>
<tr>
<td>JOHN M. KELLY JR.</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>CHARLES B. KITZ</td>
<td>West Bloomfield, Michigan</td>
</tr>
<tr>
<td>WILLIAM D. KLEINE</td>
<td>Midland, Texas</td>
</tr>
<tr>
<td>RICHARD E. LYON JR.</td>
<td>Chatham, New Jersey</td>
</tr>
<tr>
<td>DENNIS M. MALLOY</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>COLETTE A. MANN</td>
<td>St. Charles, Illinois</td>
</tr>
<tr>
<td>JOHN A. MARTELL</td>
<td>Granger, Indiana</td>
</tr>
<tr>
<td>CHERYL A. MASUD</td>
<td>Warren, New Jersey</td>
</tr>
<tr>
<td>REX MARTIN</td>
<td>Elkhart, Indiana</td>
</tr>
<tr>
<td>MARTIN A. MATICH</td>
<td>San Bernadino, California</td>
</tr>
<tr>
<td>THOMAS D. MCCLOSKEY</td>
<td>Palm Beach, Florida</td>
</tr>
<tr>
<td>LEO J. MCKERNAN</td>
<td>South Bend, Indiana</td>
</tr>
<tr>
<td>CHARLES R. McNAMEE</td>
<td>Dayton, Ohio</td>
</tr>
<tr>
<td>WILLIAM D. MENSCH JR.</td>
<td>Mesa, Arizona</td>
</tr>
<tr>
<td>RAYMOND D. MEYO</td>
<td>Fairlawn, Ohio</td>
</tr>
<tr>
<td>DENNIS F. MURPHY</td>
<td>Omaha, Nebraska</td>
</tr>
<tr>
<td>JOSEPH B. NEUHOFF</td>
<td>Dallas, Texas</td>
</tr>
<tr>
<td>MYRON C. NOBLE</td>
<td>South Bend, Indiana</td>
</tr>
<tr>
<td>FRANK E. O'BRIEN JR.</td>
<td>Alhambra, New York</td>
</tr>
<tr>
<td>EDWARD M. O'TOOLE</td>
<td>Chicago, Illinois</td>
</tr>
<tr>
<td>H. EDWARD PREIN</td>
<td>Grand Rapids, Michigan</td>
</tr>
<tr>
<td>SUZANNE M. PROVANZANA</td>
<td>Chicago, Illinois</td>
</tr>
<tr>
<td>ROGER R. REGELBRUGGE</td>
<td>Charlotte, North Carolina</td>
</tr>
<tr>
<td>THOMAS M. ROHRS</td>
<td>Los Altos, California</td>
</tr>
<tr>
<td>WILLIAM G. ROTH</td>
<td>Marco Island, Florida</td>
</tr>
<tr>
<td>SEDRA M. SPREWELL</td>
<td>Mission City, Texas</td>
</tr>
<tr>
<td>KENNETH E. STINSON</td>
<td>Omaha, Nebraska</td>
</tr>
<tr>
<td>JOHN A. TESKE</td>
<td>Palos Verdes Estates, California</td>
</tr>
<tr>
<td>SHAWN T. TILSON</td>
<td>Burlington, Ontario, Canada</td>
</tr>
<tr>
<td>JAMES D. TOOLE</td>
<td>Tucson, Arizona</td>
</tr>
<tr>
<td>PATRICK A. TOOLE</td>
<td>Westport, Connecticut</td>
</tr>
<tr>
<td>LAVETTA C. WILLIS</td>
<td>Los Angeles, California</td>
</tr>
<tr>
<td>RICHARD P. WOLSFELD</td>
<td>Minneapolis, Minnesota</td>
</tr>
<tr>
<td>DONALD J. ZEIER</td>
<td>McCook, Illinois</td>
</tr>
</tbody>
</table>