College of Science

The University of Notre Dame awarded its first bachelor of science degree in 1865. Before that time, courses had been taught in mathematics (from 1842), in biology (from 1844), and in chemistry (from 1850). In 1867, a program in general science was formulated. Subsequently, specialized programs were added, leading to the degree of bachelor of science in botany and in zoology (both now covered by one degree in biological sciences), in environmental sciences, in biochemistry, in chemistry, in physics, in mathematics and in preprofessional studies.

Departments of the College of Science

The Department of Biological Sciences, located in the Galvin Life Science Center, has laboratories well equipped for courses of undergraduate and graduate instruction and research. The collections of museum specimens, including the Nieuwland-Greene Herbarium, are available for use in teaching and research. X-ray equipment and several radioactive sources also are available. The facilities include darkrooms, a green house, controlled environmental rooms, scanning and transmission electron microscopes, confocal optical microscopes and extensive data storage and retrieval equipment.

The Freimann Life Science Center provides additional laboratories, vertebrate animal care and associated specialized modern research facilities to serve the expanding needs of the life sciences at Notre Dame. The recently completed Hank Center for Environmental Science adds more than 20,000 square feet of state-of-the-art research space for aquatic and environmental biology that includes greenhouses, wet laboratories, a field sample processing room and a fully equipped workshop.

The Department of Chemistry and Biochemistry, located in Nieuwland Science Hall and Stepan Hall of Chemistry and Biochemistry, has laboratories devoted to research and instruction in several areas of chemistry: physical, inorganic, organic and biochemistry. The laboratories are equipped with all necessary facilities for undergraduate students, graduate students, postdoctoral investigators and faculty. The facilities for experimental research include many pieces of equipment, such as infrared, ultraviolet, Raman, mass, photoelectron, nuclear magnetic resonance and electron paramagnetic resonance spectrometers; apparatus for dielectric measurements; electrochemical apparatus; gas-liquid chromatographic adsorption equipment, both analytical and preparative; special apparatus for studying mechanisms and rates of reactions; special apparatus for synthesis and structural studies on biomolecules, including cell culture facilities for generating recombinant biomacromolecules, etc. For theoretical work, the computational facilities are available, including access to a Graphics Workstation Cluster. The facilities of the Radiation Research Laboratory are used by some faculty of the chemistry department for research in physical chemistry.

The Department of Mathematics is housed in Hayes-Healey Center/Hurley Hall, conveniently located in the central campus. The facilities for undergraduate and graduate instruction and research in mathematics include a first-rate research library; a faculty room; offices for the faculty, postdoctoral investigators, and other visitors, graduate students and staff; several research seminar and conference rooms; and several large classrooms with state-of-the-art media capability.

The Department of Physics, located in Nieuwland Science Hall, has classrooms and laboratories for both undergraduate and graduate instruction and research. There are facilities for experimental work in astrophysics, elementary particle physics, nuclear physics and solid-state physics. There are three atomic spectroscopy laboratories, and some additional use is made of facilities at Argonne National Laboratory. Elementary particle experiments are done at the Stanford and Fermi national laboratories, and at CERN in Geneva, Switzerland. Development for the major accelerators is also being done in the department. The Nuclear Structure Laboratory has a tandem accelerator with a heavy ion capacity and all necessary detection equipment. A variety of solid state facilities are available for the study of metals, high Tc superconductors and semiconductors. Off-site facilities at Argonne, the National High Magnetic Field Laboratory, and the National Institutes of Standards and Technology are also heavily used. Notre Dame is a partner in the Large Binocular Telescope project, now in construction. This will be one of the most capable facilities in the world for cutting-edge cosmology and astrophysics research. Research is conducted in many major areas of theoretical physics, including all of the above areas as well as statistical mechanics, field theory, general relativity and astrophysics. The department has a substantial machine shop and research library and a variety of staff technicians. Many faculty members and research groups have computing facilities, and all have access to the Office of Information Technologies’ very large computers.

The Department of Preprofessional Studies is located in Nieuwland Science Hall. All courses for students enrolled in the preprofessional program and collegiate sequence programs are provided by the other departments of the College of Science and the other colleges of the University.

Undergraduate Education

The aim of the program of undergraduate education in the College of Science is to produce intellectually able graduates who are grounded in the broad fundamental principles of the basic sciences, versed in the advanced concepts of their chosen scientific discipline and educated in the humanistic and social studies, including theology. Each graduate should be a good scientist in his or her own field, a fully developed person, aware of his or her responsibilities to society and prepared to participate fruitfully in the affairs of society.

Education in science at Notre Dame is a coordinated program involving the basic sciences, the chosen advanced science and the humanistic and social studies, including theology and philosophy. In this education, the student should acquire a thorough, integrated and broad understanding of the fundamental knowledge in his or her field, a competence in orderly analytical thinking and the capacity to communicate ideas to others, orally and in writing. This system of education is so arranged to develop in each student the desire and habit of continuing to learn after graduation, advancing over the years to higher levels of professional and personal stature and keeping abreast of the changing knowledge and problems of his or her profession.

Emphasis is placed on fundamental principles so that the students can develop abilities to apply these principles to the solution of new problems never before encountered by society, to the discovery of new things and to the invention of devices not learned about in books. Notre Dame stresses basic concepts useful in later learning rather than masses of particular facts and data that can better be found in books at the time of need.
Curricula and Degrees

The College of Science offers curricula leading to the degree of bachelor of science in each of five undergraduate departments:
- Biological Sciences
- Chemistry and Biochemistry
- Mathematics
- Physics
- Preprofessional Studies

The following are degree programs offered by these departments:
- Biochemistry
- Biological Sciences
- Chemistry
- Chemistry combined with Business
- Chemistry combined with Computing
- Environmental Sciences
- Mathematics
- Physics
- Physics (combined with other programs)
- Preprofessional Studies
- Science-Business
- Science-Computing
- Science-Education

These degree programs are described in detail in later sections of this Bulletin.

Each College of Science student must enroll in the department of his or her major beginning with the sophomore year. However, students may change freely from one program to another within their departmental major and may also change departments at any time up through the seventh class day of their senior year.

The College of Science maintains a Web site at www.science.nd.edu. Further information related to programs offered by the college may be found at that location.

Listed below are the allowed options for students interested in double science majors, double majors between colleges, second majors in the College of Science, and supplementary majors and minors in the College of Arts and Letters.

Students pursuing one of these combination programs must have superior scholastic ability and be formally accepted by the dean of both colleges involved. Approval will not be granted if there is substantial overlap between the two programs.

Note: Courses taken toward the completion of another major or supplementary major or minor or concentration requirement may not also be counted toward the student’s other majors or minors or concentrations or University requirements.

Double Science Majors. In certain instances, students will have the option of pursuing majors in two departments of the College of Science. Details on the double science major option and lists of combinations that are normally approved are found on page 300 of this Bulletin.

Dual Degree. Notre Dame students pursuing majors in two of the undergraduate colleges may qualify for a five-year dual-degree program.

The requirements for a dual degree generally are as follows: The student completes all of the university requirements, all of the requirements for both colleges, all of the requirements for both majors, and the total number of degree credits specified for a dual degree in the two colleges. While the total number of hours required does depend on the specific major programs, the minimum required total number of degree credits is set to be 30 degree credits beyond the college total for the college with the greatest required number of degree credits. For students completing a dual degree in the College of Science and the College of Arts and Letters, the minimum number is thus 154 hours.

Double Majors in Two Colleges. Qualified Notre Dame students pursuing majors in one of the other undergraduate colleges or schools may add another major in the College of Science. Additionally, qualified Notre Dame students pursuing a major in the College of Science may also add another major in one of the other undergraduate colleges or schools.

The requirements for a double major between colleges generally are as follows: The student completes all the University requirements, the requirements of his or her college or school, and the requirements of both majors.

Supplementary Majors, Minors, and Concentrations in the College of Science. In the College of Science, the term “second major” is used for a supplementary major. Three departments offer a second major program specifically for students in the other colleges: Mathematics as a second major, physics as a second major, and environmental sciences as a second major. For details, see the departmental sections of this Bulletin.

There are no minor programs in the College of Science.

The only concentration programs offered in the College of Science are those for mathematics majors. For details, see the departmental sections of this Bulletin.

Combination Five-Year Program with the Mendoza College of Business. The College of Science and the Mendoza College of Business have established a competitive cooperative program in which a student may simultaneously earn a bachelor of science and a master of business administration degree. The program is structured so that the student who has completed the three years of a science bachelor’s degree program, if accepted, completes the master of business administration and the bachelor of science in a major in the College of Science in a summer session and two subsequent academic years.

Students who wish to pursue this program should have a superior scholastic record in their major program and must make application to, and be accepted by, the MBA program.

The general sequence of courses in the five-year Science-MBA program may be found on page 301 of this Bulletin.
University and College Requirements

A minimum of 124 credit hours is required for graduation from the College of Science. A minimum of 60 credit hours must be in science; however, each department may specify more than 60 credit hours for any of its programs.

All College of Science majors must fulfill University requirements, which include:

- FYC 110 3 hours
- Theology 6 hours
- Philosophy 6 hours
- History 3 hours
- Social Science 3 hours
- Fine Arts or Literature 3 hours

* One of these courses must be a University Seminar 180.

In addition, all College of Science majors must take courses in:
- Chemistry (113, 114 or 117, 118 or 125, 126)
- Mathematics (119, 120 or 125, 126 or 165, 166)
- Physics (131, 132 or 151, 152 or 221, 222).

The appropriate sequence for a student depends on the student's major.

The College of Science requires language proficiency through intermediate level in one of the following languages: Arabic, Chinese, French, German, Greek, Italian, Japanese, Latin, Portuguese, Russian and Spanish. Irish ("Gaelic") is not accepted. Students may complete the language requirement by either completing a course taught at intermediate level or by demonstrating proficiency through placement examination. The college office maintains a list of language courses at intermediate level.

Students with no previous background in a language should start with a beginning-level course. They take typically either nine credits over a three-semester period or two semesters of an intensive language sequence (8-10 credits total). Placement for students with some background in French, Spanish, Latin or German will be made only by examination (1) through the Advanced Placement test, (2) through the SAT II Subject test (French and Spanish), (3) through the International Baccalaureate Program or (4) through the Notre Dame departmental placement examination. A maximum of six credits of placement can be granted for previous study in a given language. Thus, typically, College of Science students who have completed the language requirement will count from six to 10 credits in language toward the 124 credits required for graduation.

The College of Science will count a maximum of three credit hours from the following types of activity courses:
- Liturgical Choir
- Folk Choir
- Music Lessons and Ensembles
- Dance
- Debate
- Social Concerns Seminar (including THEO 360)
- Science in the Classroom (SC 495)

No more than one credit hour total from any of these courses may be counted toward the degree per semester. Additionally, a maximum of six credit hours of upper-level (300- or 400-level) ROTC courses can be counted toward the 124-credit-hour requirement. These courses will be counted as free electives.

Not all science courses will count toward degree credit or science elective credit for science majors. The survey science courses offered as options for non-science majors for their University science requirement will not count as a science elective or toward the minimum science credit hour requirement. Because of overlap in content with required courses for science majors, many of these courses will also not count toward the degree credit requirement (see page 302).

Some major programs have a science elective requirement. For a course to be a science elective, it must meet the following rules: (1) It is offered through one of the departments of the College of Science or through the college itself. (2) It is major’s level; that is, other science majors are required to take this course to meet a major requirement or it has a prerequisite course that is offered for science majors, or the Bulletin description for the course states that it is a science elective in the College of Science. Finally, note the departments may place additional restrictions on allowed science electives, e.g., in the Department of Biological Sciences, a science elective must be a non-biology course.

All College of Science courses offered by a major program must be taken at the University of Notre Dame. If a student wants to take a course outside Notre Dame for credit toward the Notre Dame degree, prior approval of the dean’s office must be obtained. This does not apply to the courses taken by a transfer student prior to attending Notre Dame.

Advising. All Notre Dame science majors have been assigned an advisor in the department of their major. All advisors are members of the faculty of the College of Science. In some departments, the director of undergraduate studies for the department advises all students. Others, the director of undergraduate studies or the department office may be contacted to find out the name of the student’s advisor. A complete list of names of advisors is kept on the science Web site.

Notre Dame students who have questions concerning the choice of a major or considering a change of major are urged to make appointments with the advisors of the departments involved. Students needing help choosing from similar majors may request an advising appointment with the associate dean of the College of Science, 229 Nieuwland Science Hall.

Student Organizations and Activities

In addition to participation in University-wide student activities, the undergraduate students of the College of Science may participate in activities directly related to science, including the undergraduate departmental science organizations: the Biology Club, the Notre Dame Chapter of Student Affiliates of the American Chemical Society, the Mathematics Club, the Society of Physics Students, the Premed Club (preprofessional), the Prevet Club, the Science-Business Club and the Notre Dame Chapter of Alpha Epsilon Delta (premedical honorary fraternity).

Student Council. The Student Council of the College of Science is composed of representatives of the majors of the College of Science. The student council serves as the official body representing the undergraduate students before the administration of the College of Science.

Student Awards and Prizes

The Dean’s Award. Presented to the outstanding graduating senior in the College of Science in recognition of exemplary personal character, leadership, service and outstanding achievement. Selected by the dean and associate dean.

Outstanding Senior Biological Scientist(s). To the senior(s) who has/have demonstrated the most promise in the biological sciences as evidenced by both academic performance and research participation.

American Institute of Chemists Award. For scholastic achievements, ability and potential advancement in the chemical profession.

Merk Index Award. For outstanding achievements in chemistry.

Norbert L. Wischerath Outstanding Biochemist Award. Given to two chemistry or biochemistry majors in the junior year for outstanding achievement in academics or research.

Outstanding Biochemist Award. For leadership, academic achievements, research and scholarship in biochemistry.

Outstanding Chemist Award. For academic and research achievements in chemistry as an undergraduate.

William R. Wischerath Outstanding Chemistry Major Award. For academic achievements of a graduating senior chemistry major.

Chemistry-Education Award. For academic achievements in preparation for teaching of chemistry in a secondary education system.
Special Opportunities

Arts and Letters/Science Honors Program. In the fall of 1983, the University inaugurated an honors program for a small number of outstanding students in the College of Arts and Letters and the College of Science. A limited number of students with academic intents for each college are invited to apply for this program in the spring before their first year. Although selection criteria include the promise of outstanding academic performance as demonstrated by standardized test scores and high school performance, the program is looking for more than mere academic ability. It hopes to identify students with broad interests in science and the humanities.

The program offers honors sections to fulfill most of the University and college requirements in the students’ first and sophomore years. At present, there are honors sections of theology and philosophy, biology, mathematics, core course, literature and social science. Since most of these sections are restricted to honors students, they are smaller than non-honors sections and some are taught in a seminar format. Honors Program students meet the seminar requirement of the University by taking a seminar and letters/science seminar is required in the fall semester. For students in the College of Science, special stress is placed on involving the student with ongoing research programs as early as their sophomore year but more usually in their junior and senior years. Each student is associated with a faculty member who functions as his or her research advisor and mentor. Thus, students and faculty meet together regularly in both formal and informal settings, and this interaction leads to the completion of a research project during the senior year in the student’s major field of study.

In addition to the more narrowly academic features of the Honors Program, students are offered opportunities each semester for informal evening colloquia on topics of broad intellectual interest. These and other occasional events allow the mutually enlightening exchanges between students and faculty that are less possible in the formal settings of classroom and lecture hall.

Further information on the structure and content of the Honors Program may be obtained by contacting the Office of the Dean of the College of Science.

The Environmental Research Center (UNDERC), a University facility, is composed of approximately 7,500 acres located primarily in the Upper Peninsula of Michigan. Research is conducted at UNDERC by undergraduate as well as graduate students on a variety of environmental problems, including the manipulation of ecosystems. Internships are available to support student participation in BIOS 569 at UNDERC each semester.

International Studies Program. Students from any of the majors in the College of Science may participate in one of the University of Notre Dame’s international study programs. Science students who go abroad generally do so in one of the two semesters of their junior year. Science students interested in international studies should discuss their plans with their advisor and with the associate dean, 229 Nieuwland Science Hall. Further information can be obtained through the International Study Programs office, 109 Hurley Hall.

Francis X. Connolly

Professor of Mathematics

2001 Recipient of the Shilts-Leonard Teaching Award in the College of Science
Programs of Study

Biological Sciences

Chair and Martin J. Gillen Professor of Biological Sciences: John G. Duman

Assistant Chairs:
- Paul R. Grimstad; Ronald A. Hellenthal; Rev. James J. McGrath, C.S.C.

Director of Undergraduate Studies:
- Paul R. Grimstad

George and Winifred Clark Professor of Biological Sciences:
- Frank H. Collins

Coleman Professor of Life Sciences:
- Martin P.R. Teaniuswood

Professor and Gillen Director of UNDERC:
- Gary Belovsky

Clare Boothe Luce Associate Professor:
- Hope Hollocher

Galla Assistant Professor:
- Jennifer L. Tank

Walther Cancer Institute Assistant Professor:
- Crislyn D’Souza-Schorey

Professors:
- Harvey A. Bender; Harald E. Esch (emeritus); Morton S. Fuchs (emeritus); Frederick W. Goetz Jr.; William C. Hamlett (adjunct); Ronald A. Hellenthal; David R. Hyde; Alan L. Johnson; Charles F. Kulpa Jr.; Gary A. Lamberri; David M. Lodge; Robert P. McIntosh (emeritus); Kenneth Olson (adjunct); Joseph O’Tousa; Morris Pollard (emeritus); Karamjit S. Rai (emeritus); Howard J. Saz (emeritus); David W. Severson; Kristin Shread-Frechette (concurrent); Kenyon S. Tweedell (emeritus); Paul P. Weinstein (emeritus); JoEllen Welsh; Bernard S. Wostmann (emeritus)

Associate Professors:
- John H. Adams; Nora J. Besansky; Sunny K. Boyd; Scott D. Bridgham; Daryll D. Christ (adjunct); Peter Diffley (concurrent); Jeffrey L. Feder; Malcolm J. Fraser; Paul R. Grimstad; Robert E. Kingsley (adjunct); Rev. James J. McGrath, C.S.C.; Edward E. McKee (adjunct); John F. O’Malley (adjunct); Neil Shay

Assistant Professors:
- Nancy L. Cole (adjunct); Michael T. Ferdig; Kristin M. Hager; Edward H. Hinchcliffe; Mary Ann McDowell; Jeffrey S. Schorey; Kevin T. Vaughan

SUMMARY OF REQUIREMENTS FOR GRADUATION FOR ANY BIOLOGICAL SCIENCES MAJOR

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Credits</th>
<th>Year Usually Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences*</td>
<td>41</td>
<td>all</td>
</tr>
<tr>
<td>Chemistry (113-114 or 117-118 or 125-126; and 247-248 with labs)</td>
<td>10</td>
<td>Sophomore</td>
</tr>
<tr>
<td>Physics (221-222, or 131-132 or 151-152)</td>
<td>8</td>
<td>Junior</td>
</tr>
<tr>
<td>Mathematics (119-120 or 125-126)</td>
<td>8</td>
<td>First year</td>
</tr>
<tr>
<td>Science Elective (cannot be BIOS)</td>
<td>3</td>
<td>Junior/Senior</td>
</tr>
<tr>
<td>History**</td>
<td>3</td>
<td>First year</td>
</tr>
<tr>
<td>Social Science**</td>
<td>3</td>
<td>First year</td>
</tr>
<tr>
<td>Philosophy**</td>
<td>6</td>
<td>Sophomore/Junior</td>
</tr>
<tr>
<td>Theology**</td>
<td>6</td>
<td>Sophomore/Junior</td>
</tr>
<tr>
<td>FYC 110</td>
<td>3</td>
<td>First year</td>
</tr>
<tr>
<td>Language</td>
<td>Intermediate Level Competency</td>
<td>Sophomore/Junior</td>
</tr>
<tr>
<td>Literature/Fine Arts**</td>
<td>3</td>
<td>Junior/Senior</td>
</tr>
<tr>
<td>Free Electives</td>
<td>13</td>
<td>Sophomore/Senior</td>
</tr>
<tr>
<td>Physical Education or ROTC (2 semesters)</td>
<td>0</td>
<td>First year</td>
</tr>
</tbody>
</table>

Total: 124 credits

* It is essential for prospective biology majors to begin their general biology courses in the first year in order to schedule all required core curriculum courses within a four-year period.

** One of these courses must be a University Seminar.

† Assumes Intermediate Level Competency in Language was achieved by taking three three-credit courses.
Program of Studies. The Department of Biological Sciences offers programs of study leading to the degrees of bachelor of science with a major in biological sciences or bachelor of science with a major in environmental sciences, master of science in biological sciences and doctor of philosophy. Also offered is a second major in environmental sciences for students in the College of Arts and Letters or in the College of Business Administration.

Program in Biological Sciences. The biological sciences encompass all aspects of microbial, plant and animal life. They include the biochemistry, genetics, development, physiology, evolution and ecology of all living things. Every educated person must have sound knowledge of the fundamental principles and facts of the biological sciences in order to understand himself or herself and the world in which he or she lives. In addition biologists, through their research, contribute to the development of theories and methods required for the solution of humanity’s problems in the fields of health, agriculture, industry and the preservation of the environment.

An undergraduate major in biological sciences prepares a student for graduate study (M.S., Ph.D.) leading to a research career, and also for admission to medical, veterinary and other professional schools. Graduates with a bachelor’s degree may enter careers in industry, government or health-related research laboratories. Those who wish to teach at the elementary or secondary level should be sure to include required education courses such as those offered through Saint Mary’s College. College and university teaching requires the Ph.D. degree.

The goal of the Department of Biological Sciences is to educate its majors first as scientists prepared for the challenges of modern biology and second for any specialty area(s) in which they develop an interest, especially if that interest is directed toward graduate school and research. Also, for the approximately 60 percent of biology majors who initially express an interest in going to medical school or other health-related graduate programs, the key topic areas of modern biology emphasized in the core curriculum are also very relevant to their training as “medical” biologists.

Since the fall of 1997, students majoring in biological sciences are required to follow a core curriculum. This core not only provides exposure to most areas of modern biology but also includes courses representative of all the levels of biological organization, i.e., from atoms and molecules through ecosystems. Students unsure of which area of biology most appeals to their interests will more easily arrive at that decision through the completion of the core.

Policy Statement on the Use of Organisms in Biological Sciences Teaching Laboratories. Some laboratory courses offered by the Department of Biological Sciences may involve the use of living or preserved organisms. Instructors use these animal specimens in cases where this is deemed necessary for teaching important biological concepts and principles. Students who have concerns about the use of organisms in classes must, prior to registering, submit a request for alternate materials to the course instructor. It is up to the discretion of the instructor(s) as to whether and how non-organism alternatives may be substituted for biological materials in classes. Students permitted to use alternate materials are responsible for the same knowledge and application as their classmates and may be required to complete examinations that involve the inspection or handling of biological specimens.

Bachelor of Science with a Major in Biological Sciences
The biological sciences majors take the following basic sequence of courses in the College of Science:

General Chemistry (CHEM 113-114 or 117-118 or 125-126)
Organic Chemistry (CHEM 247-248 and 247L-248L)\(^3\)
Physics (PHYS 221-222)\(^2\)
Calculus (MATH 119-120 or 125-126)

Science elective (a three-or-more-credit science-major course, other than a biological sciences course)\(^3\)

The requirements in biological sciences include courses from a basic core sequence and sufficient numbers of BIOS electives to complete the 41-credit-hour requirement. There are seven components to the biology core requirement, consisting of courses in the following areas:

Core I: Introductory Biology
a. Ecology, Diversity and Physiology
b. Metabolism and Genetics
Students choose from either:
- Biological Sciences I and II (BIOS 155-156) (includes two labs)\(^9\)
- General Biology A and B (BIOS 201-202) (includes two labs)\(^9\)

Core II: Cellular, Genetic and Molecular Biology
a. Modern Genetics
Students choose from either:
- Classical and Molecular Genetics (BIOS 250 and 250 L)\(^7\)
- Fundamentals of Genetics (BIOS 303 and 303L)\(^5\)
b. Cell Biology
Students choose from either:
- Molecular Cell Biology (Majors) (BIOS 241 and 241L)\(^9\)
- Cellular Biology (BIOS 341 and 341L)\(^9\)

Core III: Ecology
Students choose from either:
- General Ecology (BIOS 312) (includes lab) or
- Aquatic Ecology (BIOS 420) (includes lab)

Core IV: Developmental Biology
Students choose from either:
- Developmental Biology (BIOS 342; optional lab BIOS 342L)\(^9\)
- Experimental Animal Development (BIOS 414) (includes lab)

Core V: Physiology\(^6\)
Students choose from either:
- Vertebrate (Human) Physiology (BIOS 344; optional lab BIOS 344L)\(^6\)
- Integrative Comparative Physiology (BIOS 421; optional lab BIOS 421L)\(^6\)

Core VI: Evolution and Organismal Biology
Students choose among:
- General Botany (BIOS 304) (includes lab)
- Evolution (BIOS 305)\(^7\)
- Evolution and the History of Life (BIOS 310)\(^7\)
- Vertebrate Biology (BIOS 404)\(^7\)
- General Entomology (BIOS 406; optional lab BIOS 406L)\(^7\)
- Animal Behavior (BIOS 407)\(^7\)
- Marine Biology (BIOS 422)\(^7\)
- Ichthyology (BIOS 524) and other new courses as developed for Core VI or so designated by the department\(^7\)

Core VII: Microbiology and Infectious Disease
Students choose among:
- Principles of Microbiology (BIOS 401; optional lab BIOS 401L)\(^7\)
- Medical and Veterinary Parasitology (BIOS 415; optional lab BIOS 415L)\(^7\)
- Virology (BIOS 416)\(^7\)
- Immunology (BIOS 419)\(^7\)
- Epidemiology (BIOS 427)\(^7\)
- Cellular and Molecular Basis of Human Disease (BIOS 435)\(^7\)
- AIDS (BIOS 440)\(^7\)
- Infection and Immunity (BIOS 455) and other new courses as developed for Core VII or so designated by the department\(^7\)

Students are required to take a total of six laboratories; five of the six labs will be part of the Core (Core I(a,b), II(a,b), and III), and the sixth laboratory must be chosen from Core areas IV to VII. The minimum required credits in the core including labs is 33. An additional eight credits of electives in biological sciences are chosen to complete the required total of 41 credits.\(^8,9\) All biological sciences majors are encouraged to include non-science among their “free electives.”

Notes:
1. All first-year majors completing BIOS 156, or those enrolling in BIOS 201, are required to select the sequence CHEM 247-248 and its labs. This is especially important for career-oriented majors in biological sciences. Only those students changing their majors to biological sciences while enrolled in CHEM 223 or 224 would complete this alternative sequence. Students may not switch from CHEM 223 to CHEM 248 to complete the organic chemistry sequence.
3. Any non-BIOS major-level College of Science courses (i.e., those taken to meet science-major requirements and not those designated as “Recommended University electives”) and that are not being used to fulfill other specific graduation requirements may be used to satisfy the "Science Elective" requirement (three-credit hour course).

4. All majors are strongly encouraged to complete the sequence Biological Sciences I and II (BIOS 155-156) in their first year to ensure the completion of all requirements in four years. Students may begin the core with General Biology A and B (BIOS 201-202); however, they will be at a considerable disadvantage in scheduling requirements in the two remaining years; they also will have one year less to explore their interests in biology.

5. Career-oriented majors in biological sciences, as well as those considering this professional school (medicine, veterinary science, others), are urged to select the courses Molecular Cell Biology (BIOS 241) and Classical and Molecular Genetics (BIOS 250). These should be taken in the sophomore year but no later than the junior year.

6. Physiology should be completed by the end of the junior year for students planning to take the MCAT exam or the seventh semester for students planning to take the GRE biology subjects exam.

7. Graduate (500-level) courses are open to eligible juniors and seniors; often the majority of students in these advanced courses are undergraduates.

8. Students must choose additional courses in the Core areas III and V through VII or in courses not assigned to the core (e.g., BIOS 411, Bio-statistics, or BIOS 498, Undergraduate Research), or 500-level courses, to meet the required total of 41 credit hours in biological sciences courses. Up to six hours of select science-major coursework (e.g., CHEM 420) can be substituted for biological sciences electives with the consent of the Director of Undergraduate Studies for the Department of Biological Sciences.

9. Undergraduate Research (BIOS 498), Teaching Practice (BIOS 499), and Directed Reading (BIOS 497) count toward the 41-credit biological sciences requirement; however, only a maximum of two credits per semester per course and a combined total of six credits from all of these courses may be counted in fulfilling the 41-credit requirement. A maximum of only nine credits in these courses may be used toward graduation; however, additional credits do remain on a student’s transcript record.

Recommended Sequences

After consultation with the director of the undergraduate studies or other faculty advisors including research mentors, each student is encouraged to select the curriculum which best fits his or her career goals. A great deal of flexibility is permitted in designing each individual’s projected course schedule, within the context of the core curriculum. For students wishing to emphasize specific areas of biology in their curricula, the following four course sequences are provided as guides which have proved to be appropriate for most of our previous graduates.

General Biosciences Sequence: This sequence gives the student a broad foundation in biological sciences by requiring electives from each of its major areas. The sequence is meant as preparation for the Graduate Record Examination (GRE) in biology, or the Medical College Admission Test (MCAT). Students considering graduate school or secondary science education, or those without a clear career goal, should consider this sequence. For this sequence, students follow the core curriculum, making choices in areas I, II, IV, V, and VII. In the area of Core VI, the course Evolution (BIOS 435); and Epidemiology (BIOS 427) and/or Environmental Microbiology (BIOS 528). Molecular Genetics (BIOS 418) is also recommended as an elective.

Cellular and Subcellular Sequence: This sequence was designed for students considering graduate study in any of the many areas of cellular biology and biochemistry. It is also appropriate for premedical students who do not choose the general biosciences sequence. For this sequence, students follow the core curriculum, making choices in areas I to IV and VI. In the area of Core V, Physiology, students should consider taking both courses listed. In the area of Core VII, the courses Introduction to Microbiology (BIOS 401) and Virology (BIOS 416); Infection and Immunity (BIOS 455) or Medical and Veterinary Parasitology (BIOS 415); Immunology (BIOS 419); Cellular and Molecular Basis of Human Disease (BIOS 435); and Epidemiology (BIOS 427) and/or Environmental Microbiology (BIOS 528). Molecular Genetics (BIOS 418) is also recommended as an elective.

Organismic and Community Sequence: This sequence is primarily intended for students planning careers in ecology, environmental biology and related areas and allows students to develop considerable expertise during their undergraduate years. It requires electives in biological sciences beyond the 41 credits required of the major. Individual interests may be accommodated by judicious choice of biological science courses and of the science elective.

Students interested in this area of biological sciences may wish to take advantage of the University of Notre Dame Environmental Research Center (UNDERC), a University facility which comprises about 7,000 acres, including more than 20 lakes, in the Upper Peninsula of Michigan. Biological research (including whole-ecosystem experiments), graduate studies and undergraduate coursework take place at the center. Internships are available to support student participation in BIOS 569 at UNDERC each summer.

In this sequence, students follow the core curriculum, making choices in areas I, II, IV, V, and VII. In the area of Core III, Ecology, students should consider taking both courses listed. In the area of Core VI, students are encouraged to take General Botany (BIOS 304). Also recommended from Core VI are Vertebrate Biology (BIOS 404) and/or General Entomology (BIOS 406) and Animal Behavior (BIOS 407).

Microbiology Sequence: This sequence is intended for students interested in microorganisms and molecular biology and those wanting to take graduate study in these areas. It is also appropriate for premedical students who do not choose the general biosciences sequence. It requires electives in biological sciences beyond the 41 credits required of the major.

For this sequence, students follow the core curriculum, making choices in areas I to VI. In the area of Core VII, students should take Principles of Microbiology (BIOS 401 and the lab BIOS 401L); Virology (BIOS 416); Infection and Immunity (BIOS 455) or Medical and Veterinary Parasitology (BIOS 415); Immunology (BIOS 419); Cellular and Molecular Basis of Human Disease (BIOS 435); and Epidemiology (BIOS 427) and/or Environmental Microbiology (BIOS 528). Molecular Genetics (BIOS 418) is also recommended as an elective.

Sample Curriculum: The sample curriculum for the four-year program listed below is only one of a number of ways a student can complete all the requirements for a biology major. Students should discuss their specific interests with their department advisor and plan their semesters accordingly. Alternative sample curricula can be developed with the assistance of the biology advisors.
First Year

Fall Semester
- BIOS 155 (Core Ia: Principles) 4
- MATH 119 or 125 4
- CHEM 113, 113L or 117, 117L 4
- History or Sociology 3
- FYC 110 5
- Physical Education or ROTC 0

Spring Semester
- BIOS 156 (Core Ib: Principles) 4
- MATH 120 or 126 4
- CHEM 114, 114L or 118, 118L 4
- History or Sociology 3
- Theology or Philosophy 3
- Physical Education or ROTC 0

Sophomore Year

Fall Semester
- BIOS 250 (Core Iia: Genetics) 4
- CHEM 247, 247L 4
- Theology/Philosophy 3
- Language 3

Spring Semester
- BIOS 241 (Core Iib: Cell Biology) 4
- CHEM 248, 248L 4
- Theology/Philosophy 3
- Language 3

Junior Year

Fall Semester
- BIOS Core III (Ecology) 3
- BIOS Core IV (Developmental Biology) 4
- Physics 221, 221L 4
- Theology/Philosophy 3
- Language 3

Spring Semester
- BIOS Core V (Comp. Physiology) 5
- Physics 222, 222L 4
- Elective 3
- Fine Art/Literature 3

Senior Year

Fall Semester
- BIOS Core VI (Evolution/Organismic Biology) 3
- BIOS Core VII (Microbiology/Infectious Diseases) 3
- BIOS/Science Elective 3
- Science Elective 3
- Free Elective 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS VI or VII</td>
<td>3/4</td>
</tr>
<tr>
<td>BIOS/Science Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Descriptions

BIOS 101. Human Genetics, Evolution, and Society
(3-0-3) Bender

This course will address fundamental biological principles using the two cornerstones of modern biology: genetics and evolution. Elementary chemistry, cell theory, reproduction, and development will also be covered. The emphasis, however, will be on human genetics and will include such topics as the cause and effects of genetic abnormalities, the genetic basis of intelligence and skin color, genes and cancer and elementary population genetics. The state of “genetic engineering” research, the recombinant DNA controversy (including the implications of this kind of research on society and the individual) will be presented. Fall.

BIOS 102. Plants, Food, and Society
(3-0-3) McGrath

Overview topics will cover primary reproductive biology in plants and influences in bioengineering topics, chiefly involving DNA and gene-splicing. World food concerns and environmental consequences of agronomy occupy a good portion of class time. Video presentations each Friday are on topics covered in lecture. The role of fungi in fundamental situations of plant disease and the degradation of waste materials conclude the topics of environmental influences. Fall and spring.

BIOS 103. Common Human Diseases
(3-0-3) Streit

The goal of this course is to introduce students to diseases that may afflict them, their parents and/or their children, as well as other health problems common to the tropics. It will provide the student with the information necessary to understand the biology of the disease process. Fall. Students may not take this course and the course SCP 102.

BIOS 107. Environment and Evolution
(3-0-3) Staff

Emphasis will be placed upon today’s ecological and environmental problems and the possible effect they may have upon the future evolution of life on Earth. Topics will generally include an overview of the theory of evolution and a discussion of ecological principles as observed at the population, community, and ecosystem levels. The influence of cultural and political factors will also be discussed. Each academic year, one or more sections will be offered; some may be individually subtitled, allowing for one-time presentation of specific topics.
within the context of "environment and evolution" in addition to multiple-semester presentations of a specific topic (e.g., Evolutionary Ecology, Freshwater and Society, Environmental Issues and Solutions). Fall or spring.

108. Revolutions in Biology
(5-0-3) Staff
The goal of this course is to teach six basic tenets of biology, the historical context for each discovery, the scientific and technical advances made and their ethical implications. The topics will include genetics and evolution, cell biology and biochemistry, the germ theory, and ecology. A term paper is required. Summer.

109. Human Reproduction and Society
(3-0-3) Johnson (or staff)
Basic aspects of human development and reproduction will be covered from conception through sexual senescence. In addition, the science behind many currently debated social issues will be addressed. Selected topics might include causes and treatment of infertility, in vitro fertilization, control of male and female fertility, pregnancy and paternity testing, gene therapy, the effects of legal and illegal drug use on reproductive function and embryonic/fetal development, and the impact of current health care policy and practice on infant and prenatal health. Fall.

110. Genetics, Technology, and Society
(3-0-3) Whaley
The objectives of this course are to give students an overview of human genetics and an appreciation for the relatively new field of molecular biology that is currently being used to study human genetic diseases. Genetic technologies such as cloning and manipulating genes, genetic biotechnology, gene therapy, DNA testing and so forth will be emphasized. The ethical, social and legal implications of these technologies will also be covered. In addition, this course will address the role of genetics in human cancer, behavior, obesity, intelligence and sexual orientation. Spring and summer.

112. The Marine Environment
(3-0-3) Staff
Not available to students who have previously taken BIOS 107.
The course will introduce students to the geophysical, physical and biological processes that shape 70 percent of Earth’s surface and greatly influence the remaining 30 percent. Geological and physical processes that create ocean basins, waves, tides and currents will provide the basis for understanding the habitat in which marine organisms must live. The evolution of life from its origin in the primordial sea to today’s diverse biota, their adaptations to many stressful marine habitats, their interactions with other organisms, and current environmental threats will be discussed.

115. Microbes and Man
(3-0-3) Staff
The course will provide a survey of relationships between man and microorganisms. General information about microbial physiology, biochemistry and ecology will support more detailed discussions of interesting topics in food, medical, applied and environmental microbiology. Included will be subjects of historical and general interest, as well as current newsworthy topics. The student should get a better understanding of the role of microorganisms in disease, the production of common foods, relevant environmental issues and biotechnology.

116. Biology and Nutrition
(3-0-3) Shay
This course provides a general overview of the field in nutrition. Topics to be presented include an introduction to the field of nutrition, nutrient composition of foods, recommended intakes and health claims, a review of the nutrients, food intake and energy balance, sports nutrition, eating disorders, current issues of food safety, fads, and other aspects encompassing nutrition during all stages of life.

Biological Sciences

Note: Students are not allowed to switch from the 201-202 sequence to the 155-156 sequence. BIOS 201 must be completed before BIOS 202 is taken; similarly, BIOS 155 must be finished before BIOS 156 is taken. In some instances, students who started with BIOS 155 will be allowed to finish the basic biology sequence with the course BIOS 201. While this is allowed, a student should not plan this as an option. Note that both BIOS 155 and 201 are fall courses; thus, for students changing between first- and second-year sequences, BIOS 155 would have been taken in the fall of the first year along with general chemistry, and BIOS 201 would need to be taken in the fall of the sophomore year after completion of general chemistry.

191. Molecular Genetic Technology
(3-0-3) Whaley
Open to non-science honors students only. Not available to students who have previously taken BIOS 101 or BIOS 110.
The objectives of the course are to have students learn the basics of cell division and Mendelian genetics and then explore the relatively new field of DNA technologies such as gene cloning, genetic testing, biotechnology, and cancer genetic analysis. This course also has a service learning component in which students will work at the Logan Center in South Bend. Fall.

201-202. General Biology A and B
(3-0-3) (3-0-3) Staff
Prerequisites: CHEM 114 or 118 or 126.
Introduction to living organisms with emphasis on biological processes and principles. BIOS 201 and 202, along with their concomitant laboratories (BIOS 201L and 202L) constitute a traditional two-semester introduction to biology. This sequence covers more topics, but in less depth, than BIOS 155 and 156 and is designed to provide students with the necessary background for subsequent advanced biology courses and to help them prepare for MCATs. A prerequisite is a full year of college chemistry. In addition, organic chemistry is to be taken concurrently. The general sequence of topics is reversed compared to BIOS 155 and 156. BIOS 201 introduces biology to the student at the cellular level, covering such topics as important biological molecules, energy metabolism, and classical and modern genetics. BIOS 202 goes beyond the cellular level, with an emphasis on organismic physiology, evolution, diversity and ecology.

Note: CHEM 114 or 118 or 126 must be completed before taking BIOS 201. BIOS 201, 201L, and 202, 202L may be substituted for 155-156, however, this sequence is quite different from 155-156 in content and does not provide the depth afforded by 155-156 nor does 201-202 provide the equivalent laboratory experience essential to biology majors intent on taking BIOS 241 and 250.

201-202L General Biology Laboratory
(0-3-1) (0-3-1) Staff
Students registering for 201-202 must concurrently register for 201L-202L respectively.
the organism, providing a full-circle study of the wild-type flies brings the molecular work back to the laboratory. The students are combined to produce a cohesive genetic picture. The laboratory gives the students hands-on experience in a number of genetic and molecular biology are next presented, and students learn how to apply these techniques to explore genetic problems. Classical and molecular genetics are introduced first. Students are given a bona fide research experience involving the development and application of critical thinking skills to solve complex research problems. Working in groups of four to six, students will be divided into two major sections, starting with the genetic characterization of a mutation, followed by the molecular characterization of the altered gene causing that mutation. This directed research project will be presented in two drafts of a complex research paper. Some work outside the three-hour lab period will be required. Fall.

294. Neotropical Natural History (V-V-3) Hamlett
Prerequisite: Permission of the instructor and BIOS 156 or 202 with labs.
This course will be a summer offering for three credit hours; science majors may take it only as a free elective. Topics will be presented as lectures, discussions, and laboratory instruction includes a semester project involving photomicroscopy or seed germination and cloning.

305. Evolution (3-0-3) Staff
Prerequisite: BIOS 156 or 202.
The mechanisms and processes involved in the production of life as we know it today, as well as a discussion on the impact current events may have upon life in the future.

310. Evolution and the History of Life (3-0-3) Feder
Prerequisites: BIOS 156 or 202.
This course explores the origin, history, and systematic of life on Earth, starting from hypotheses examining life’s origin(s) and including current thinking concerning the systematic relationships of organisms and the evolution of humans. The class will be taught primarily from a macroevolutionary perspective. BIOS 310 therefore represents the complement to BIOS 305 (Evolution), which concentrates on processes generating gene frequency changes within populations (i.e., microevolution). Spring.

312. General Ecology (3-3-4) Staff
Prerequisite: BIOS 156 or 202.
The study of populations and communities of organisms and their interrelations with the environment.

341. Cellular Biology (3-0-3) Staff
Prerequisites: BIOS 156 or 201; CHEM 243 or 247.
Designed primarily for junior preprofessional students. Structural and functional aspects of the biology of cells are addressed.
341L. Cell Biology Laboratory
(0-3-1) Welsh
Prerequisite or corequisite: BIOS 341.
This laboratory course exposes students to a variety of techniques in modern cell biology. Students will get hands-on experience in working with cultured cell lines, including sterile technique, media preparation and passaging of cells. Individual experiments will include assessment of cell growth and apoptosis, examination of subcellular structure using fluorescent microscopy, separation and analysis of nucleic acids and proteins, enzyme assays and measurement of cell cycle by flow cytometry. It provides an excellent introduction to the approaches routinely used in analysis of cells and their functions. Fall.

342. Developmental Biology
(3-0-3) Staff
Prerequisite: BIOS 156 or 202.
Development of plants, animals and microorganisms studied at the molecular, cellular and organismic levels. Spring.

342L. Developmental Biology Laboratory
(0-3-1) Staff
Prerequisite or corequisite: BIOS 342.
Laboratory exercises will examine the basic developmental mechanisms of animals and plants. Spring.
NOTE: Students may not take both BIOS 342 and 414 because the lecture materials are very similar in these two developmental biology courses.

344. Vertebrate Physiology
(3-0-3) Boyd
Prerequisite: BIOS 156 or 202.
Physiological functions and processes at the level of organs and organ systems, oriented primarily toward humans. Designed primarily for junior preprofessional students. Fall.

344L. Vertebrate Physiology Laboratory
(0-3-1) Boyd
Prerequisite or corequisite: BIOS 344.
Laboratory experience in physiology. Ideally, this laboratory is taken after students have completed the BIOS 344 lecture. Fall.

401. Principles of Microbiology
(3-0-3) Kulpa
Prerequisite: BIOS 156 or 202 and CHEM 224 or 248.
An introduction to microbial life, including structure and function of bacteria. Characterization and classification of microorganisms are considered and include their ecology, growth and death, metabolism, physiology, genetics and antigenic analysis. The impact of microorganisms on human health is discussed through representative pathogenic bacteria. Fall.

401L. Principles of Microbiology Lab
(0-3-1) Kulpa
Prerequisite or corequisite: BIOS 401.
Laboratory exercises consider basic techniques in microbiology, such as sterile procedures and microbial metabolism. Fall.

404. Vertebrate Biology
(3-0-3) Goetz
Prerequisite: BIOS 156 or 202.
A study of systematic relationships, evolution and life histories of living and extinct vertebrates, and the physiology and behavior of living vertebrates. Fall or spring.

406. General Entomology
(3-0-3) Collins
Prerequisite: BIOS 156 or 202.
A study of the morphology, life histories and systematic relationships of insects, with emphasis on medical and agricultural aspects. Alternating fall semesters.

406L. General Entomology Laboratory
(0-3-1) Collins
Prerequisite or corequisite: BIOS 406.
The laboratory introduces students to insect morphology, systematics and techniques used in the study of insects. Offered concurrently with lecture.

407. Animal Behavior
(3-0-3) Each
Prerequisite: BIOS 156 or 202.
A consideration of individual and social behavior patterns, with emphasis on organization and adaptive significance. Neural, endocrine, genetic and environmental factors modifying behavior will be examined. Spring.

408. Arthropods and Human Disease
(3-0-3) Collins
Prerequisite: BIOS 156 or 202.
Emphasis on physiology, genetics and relationships of arthropods as agents and vectors of disease. Fall: Alternating years.

408L. Medical and Veterinary Entomology Laboratory
(0-3-1) Collins
Prerequisite or corequisite: BIOS 408.
The laboratory introduces students to the variety of arthropods that vector disease agents or otherwise affect the lives of humans and other vertebrate animals.

411. Biostatistics
(3-1-4) Lamberti
Prerequisite: BIOS 156 or 202; MATH 120, 126, 166 or 196.
Basic principles of statistical analysis and their application to biological problems, including statistical inference, analysis of variance, regression, non-parametric approaches, and introduction to statistical computing. This course’s “lab” is a tutorial; it does not fulfill the laboratory elective requirement (after 1993). Students must not take both BIOS 411 and MATH 214. Spring.

414. Experimental Animal Development
(3-3-4) Staff
Prerequisites: BIOS 241 or 341 and BIOS 250 or 303.
Experimental approaches to the study of development. Emphasis is placed on molecular and genetic analyses of model systems: invertebrate, amphibian, avian and mammalian. Concurrent enrollment in the laboratory (BIOS 414L) is required. Since laboratory and lecture material are integrated throughout the semester, laboratory may not be taken separately from lecture. NOTE: Students may not take both BIOS 342 and 414 because the lecture materials are very similar in these two developmental biology courses. Fall.

415. Medical and Veterinary Parasitology
(3-3-4) Adams
Prerequisite: BIOS 156 or 202.
The animal parasites of humans and related hosts are reviewed. The pathology caused by these parasites, epidemiology, life cycles, prophylactic and therapeutic control are considered.

415L. Medical and Veterinary Parasitology Laboratory
(0-3-1) Adams
The laboratory introduces students to the microscopic world of parasites. Extensive microscope work is needed.

416. Virology
(3-0-3) Fraser
Prerequisite: BIOS 156 or 202; and 241 or 341 and 250 or 303.
A study of viruses as primitive biological entities and as disease-inducing agents in humans and other animals: characteristics of viruses and virus infections; molecular aspects of virus replication; methods for diagnosis and prevention of infections; artificial use of viruses. Spring.

417. Human Musculoskeletal Anatomy
(3-0-3) O’Malley
Prerequisite: BIOS 156 or 202.
An introduction to basic anatomical principles relating to bones and muscles and to the normal anatomical and biochemical aspects of the human musculoskeletal system. Fall.

418. Molecular Genetics
(3-0-3) O’Tousa
Prerequisites: BIOS 250 or 303 (genetics); a course in biochemistry would be useful.
The course will introduce the tools of modern molecular biology and explore their applications at the frontiers of biological research. Advanced topics may include molecular medicine, biotechnology, development, evolution and neurobiology. Spring.

419. Immunology
(3-0-3) Staff
Prerequisite: BIOS 250 or 303; BIOS 241 or 341.
An introductory course emphasizing the cells and tissues of the immune system and the nature and function of antigens and antibodies. A survey is presented of immune capabilities of humans and animals, immune diseases, immunodeficiency states, transplantation of organs and the role of nutrition in the immune system. Fall.

420. Aquatic Ecology
(3-3-4) Hellenthal
Prerequisites: BIOS 156 or 202.
A study of the structure and function of aquatic systems with emphasis on the behavioral, physiological and morphological adaptations generated by the physical and chemical characteristics of various aquatic habitats. Fall.
421. Integrative Comparative Physiology (4-0-4) Johnson, Duman
Prerequisite: BIOS 241.
Designed primarily for students in the biology or biochemistry majors sequences. This course is designed to be taken either as an introductory animal physiology course for students without formal training in physiology beyond general biology or as a second physiology course for students who have already taken BIOS 344. General physiological principles are introduced, and the course is designed around the classical organ/system approach to physiology but with stress on comparative and evolutionary relationships. Emphasis is placed on the integrated nature of the various physiological systems and on the relationships of the physiology of the organism to its environment (physiological ecology) as well as to the lower levels of biological hierarchy (biochemistry, cell and molecular biology). Special emphasis is placed on adaptations to environmental extremes. This course has four lectures per week. Spring.

422. Marine Biology (3-0-3) Staff
Prerequisite: BIOS 156 or 202.
Examination of the organisms of the oceans and the interrelationships with the physical, geological and chemical factors of their environment. Fall.

426. Fundamentals of Human Genetics (3-0-3) Bender
Prerequisite: BIOS 250 or 303.
Survey of methods utilized in human genetics studies as applied to medical, physiological and social problems. Spring.

427. Epidemiology (3-0-3) Grimstad
Prerequisite: BIOS 156 or 202.
a consideration of the natural history or ecology of diseases as they occur in humans and animals. This course is designed for upperclass students entering health-related fields. Fall.

435. Cellular and Molecular Basis of Human Disease (3-0-3) Welsh, Schorey
Prerequisites: BIOS 241 or 341; BIOS 250 or 303
This course will explore the cellular and molecular mechanisms underlying various human diseases. Following an introduction to principles of disease, lectures will focus on recent advances in cellular and molecular aspects of immune responses and inflammation, pathogenic mechanisms and tumor cell biology (including abnormal growth regulation, invasion and metastasis). Specific examples of human diseases will be utilized to illustrate the concepts of disease-related gene products, the use of experimental animal models and the development of novel therapeutic strategies.

440. AIDS (3-0-3) Fraser
Prerequisites: BIOS 250 or 341; BIOS 401 or the equivalent is also highly recommended.
This course will explore the phenomenon of AIDS, including characteristics of the worldwide AIDS pandemic, the virus (HIV) itself, the immune system and HIV, methods of diagnosis, prevention, treatment and basic epidemiology as it relates to AIDS. This is an advanced course in infectious diseases designed for preprofessional and other interested students. Fall.

455. Infection and Immunity (3-0-3) Grimstad
Prerequisites: BIOS 241 or 341, 250 or 303 and 344 or 421; recommended primarily for seniors.
A characterization of bacterial and viral pathogens and their mechanisms of pathogenesis. Specific diseases are considered from the standpoint of diagnosis and isolation of the etiologic agent, immunologic host responses, therapy and prophylaxis. Spring.

460. Plant Ecology (3-0-3) Bridgham
Prerequisite: BIOS 312.
The population biology, community dynamics, and interactions with the physical environment of terrestrial plants. Spring.

475. Laboratory Animal Science (2-0-2) Grimstad, Stewart
Prerequisites or corequisites: BIOS 241 or 341 and 344 or 421 and consent of instructor.
An introduction to laboratory animal science, focusing on federally mandated regulations, animal rights/animal welfare controversies, general care and use of animals in a full-compliance program, and common methodologies used in animal-based research. Enrollment is by consent of instructor only and limited to junior or senior undergraduate preveterinary students, or biology majors whose graduate career program will require animal use, or graduate students whose research requires animal use at Notre Dame. Spring.

475L. Laboratory Animal Science Laboratory (0-6-2) Staff
Prerequisites: BIOS 475 and consent of instructor.
This course focuses on experimental techniques and methodologies in both laboratory and clinical settings. Students will divide their laboratory time between hands-on work in the animal facility and clinical experience in area veterinary clinics when possible. Enrollment is by consent of instructor only and limited to senior undergraduate preveterinary students, or senior biology majors whose graduate research program will require animal use at Notre Dame. Every student will be required to keep a complete notebook and develop a semester journal project or case study. Fall.

497. Directed Readings (V-V-V) Staff
Prerequisite: Permission of instructor.
This course provides the opportunity for independent study through readings on specific topics in biological science. Readings are chosen with the advice of the supervising instructor. Students may not register for more than three credits per semester; only two credits per semester may be counted as BIOS elective credits by majors. Offered all semesters.

498. Undergraduate Research (V-V-V) Staff
Prerequisite: Permission of instructor.
Research in collaboration with members of the faculty. Evaluation of performance will be accomplished through regular discussions with the faculty member in charge of the course. Enrollment must be completed before the end of the first week each semester. Students may not register for more than three credits per semester; only two credits per semester may be counted as BIOS elective credits by majors. Offered all semesters.

The following undergraduate courses have been offered periodically as demand dictates:

403. Invertebrate Biology
409. Plant Taxonomy
413. Cytology
424. Tumor Cell Biology

UNDERC Field Biology Program. A special seven-credit program primarily for undergraduate students involving three semesters that emphasizes field biology is offered at the University’s Environmental Research Center. Undergraduate students must apply to the program; only a limited number may be selected each year because of limited availability of space on site. On selection in late fall, students enroll in BIOS 598 for one credit and BIOS 569 for six credits. The summer’s project is completed in the subsequent fall semester.

Required courses:

568. Introduction to UNDERC (1-0-1) Hellenthal
A seminar course preparing students for the BIOS 569 UNDERC experience. Spring.

569. Practicum in Aquatic Biology (V-V-V) Hellenthal
Practical training in aquatic and environmental biology is emphasized through lecture and field experience at the University’s environmental research facility, located in the Upper Peninsula of Michigan. Course includes an independent research project.
Environmental Sciences

Director, Professor of Biological Sciences: Charles F. Kulpa Jr.

Program in Environmental Sciences. The form and function of planet Earth have been changed as a result of the activities of humans. Current concerns, such as environmental pollution and global warming, are the results of complex processes. It is now important for people in all walks of life to be aware of how we interact with the Earth and how environmental changes will affect us in the future.

The environmental sciences major is an interdisciplinary program designed to build sensitivity and breadth in environmental areas. The curriculum is designed to expose students to a scientific view of our environment from biological, chemical and geological perspectives. Particular emphasis is placed on understanding how humans interact chemically and biologically with the environment. Material and energy resource limitations, chemical and thermal pollution, and effects of environmental pollution on public health are major considerations within the environmental sciences curriculum.

Emphasis is also placed on understanding interactions between human societies and the environment from social, ethical, economic, anthropological and governmental points of view. Students are also encouraged to strengthen their mathematical and computational skills and to participate voluntarily in environmentally oriented research projects or summer internships.

The First Major. College of Science students who major in Environmental Sciences will earn the degree of bachelor of science. Students following the Environmental Sciences first major program complete a total of 69 credits of science. A second major in Environmental Science is also offered to students in the College of Arts and Letters or in the Mendoza College of Business. Second majors are required to complete 37-38 credits of science.

The Second Major for Arts and Letters and Business: Most students in the College of Arts and Letters or in the Mendoza College of Business may participate in the Environmental Sciences Program as a second major. Students considering this program should investigate options brought to a first major by adding coursework in environmental sciences. For example, students majoring in government and in environmental sciences could consider

| **SUMMARY OF REQUIREMENTS FOR GRADUATION FOR ENVIRONMENTAL SCIENCES MAJOR** |
|-------------------------------|-----|
| **Credits** | |
| Biological Sciences | 16 |
| Chemistry | 11-13|
| Geology | 4 |
| Mathematics | 8 |
| Physics | 8 |
| SC 491 | 3 |
| Science Electives | 17-19|
| Total Science | 69 |
| Language | Intermediate Level Competency |
| FYC 110 | 3 |
| Philosophy* | 6 |
| Theology* | 6 |
| History* | 3 |
| Social Science | 3 |
| Literature/Fine Arts* | 3 |
| Free Electives | 22**|
| | 124 |

*One of these courses must be a University Seminar 180.

* Assumes Intermediate Level Competency in Language was achieved by taking three 3-credit courses.

500-level courses in biological sciences are open to qualified undergraduates, subject to the approval of the course instructors and the director of undergraduate studies. Graduate-level courses that generally include a majority of upperclass students and that are recommended to undergraduate majors include:

- BIOS 504. Developmental Genetics
- BIOS 506. Cytogenetics
- BIOS 508. Population Genetics
- BIOS 509. Plant Anatomy
- BIOS 514. Field Parasitology
- BIOS 515. Vector Genetics
- BIOS 517. Biological Microtechnique
- BIOS 524. Ichthyology
- BIOS 525. Community Ecology
- BIOS 527. Stream Ecology
- BIOS 528. Environmental Microbiology
- BIOS 531. Molecular Biology I
- BIOS 532. Molecular Biology II
- BIOS 535. Comparative Endocrinology
- BIOS 536. Advanced Virology
- BIOS 538. Neurobiology
- BIOS 539. Advanced Cell Biology
- BIOS 554. Biological Research Applications of Computers
- BIOS 556. Histology
- BIOS 558. Biological Electron Microscopy
- BIOS 561. Advanced Aquatic Ecology
- BIOS 562. Aquatic Insects
- BIOS 563. Wetland Ecology
- BIOS 564. Behavioral Ecology
- BIOS 570-578. Topics Courses

Additional undergraduate and graduate-level courses are expected to be added during the next four years.

The above 500-level courses are described in the Graduate School Bulletin of Information.
postgraduate study or careers in public policy. Students majoring in economics and in environmental sciences would have a good background for the developing field of environmental economics. A second major in Environmental Sciences also complements majors in the other sociological fields of anthropology, psychology, or sociology. Similarly, business students will likely find environmental sciences to be useful background when working with local or federal governments on issues of environmental compliance or when considering the impact of business decisions on the environment (environmental assessment). All students are urged to discuss their long-range career plans with advisors in both majors.

Relationship with Other Programs: The Environmental Sciences Major Program has a special collaborative relationship with the Science, Technology, and Values (STV) Concentration housed in the Reilly Center in O’Shaughnessy Hall. Many of the courses required of environmental sciences first majors are also crosslisted as STV courses. Thus, students in the STV program from across the university are expected to benefit in the curricular endeavors of the Environmental Sciences Program. Environmental sciences first majors generally will not be enrolled in the STV program. (Exception: Science students with exceptional flexibility in program may have room to complete a STV concentration by taking STV courses beyond those required by the first major or university requirements.) However, arts and letters students with second majors in environmental science will be encouraged to participate in further interdisciplinary coursework through the STV concentration. Second majors are especially encouraged to take the capstone course, SC 491, Current Topics in Environmental Science, as part of the STV concentration.

Bachelor of Science with a Major in Environmental Sciences
All environmental sciences first majors take the following courses in science:
- General Biology (BIOS 201-202 and 201L-202L)1
- General Chemistry (CHEM 117-118)1
- Calculus (MATH 119-120 or 125-126)1,2,3
- Geology (SC 231)
- Physics (PHYS 131-132 or 221-222)
- Biostatistics (BIOS 411)
- Ecology (BIOS 312)
- Chemistry elective4
- Current Topics in Environmental Science (SC 491)5

Students also will choose science electives chosen from an approved list, completing a required minimum total of 69 credits in science. Also required for the major are the following non-science courses:
- Environmental Ethics (PHIL 247) or Science, Technology and Society (PHIL 256) or approved substitute6

Introduction to Economics (ECON 115 or 225)7,8

Students are also urged to choose their electives from a recommended list of arts and letters courses.9

Requirements for the program are summarized in the table.

Notes:
1. Equivalent or higher-level sequences in science may be substituted, e.g., CHEM 113-114 or CHEM 125-126 for CHEM 117-118 or BIOS 155-156 for BIOS 201-202 or MATH 165-166 for MATH 125-126.
2. Students interested in the area of ecological modeling are strongly urged to take MATH 125-126 for their mathematics requirement. Other mathematics courses should be taken as science electives.
3. Students who have completed only six hours of mathematics in their first year may transfer into the program, but they will be required to complete a mathematics sequence equivalent to MATH 119, 120 or MATH 125, 126. Students having taken MATH 105, 106 (or 108 or 110) may do this by taking MATH 120, while those who have taken only one semester of lower-level calculus should take both MATH 119, 120. (See also the discussion on science degree credit found on page 288.)
4. The chemistry elective requirement is satisfied by either one first course in organic chemistry (CHEM 223, 223L or CHEM 235, 235L or CHEM 247, 247L) or Inorganic Chemistry (CHEM 249) or by Analytical Chemistry (CHEM 333, 333L).
5. The following are approved science electives for this program:
- Botany (BIOS 304)
- Evolution (BIOS 305)
- Principles of Microbiology (BIOS 401)
- Animal Behavior (BIOS 407)
- Aquatic Ecology (BIOS 420)
- Marine Biology (BIOS 422)
- Stream Ecology (BIOS 527)
- Environmental Microbiology (BIOS 528)
- Environmental Chemistry (CHEM 204)
- Further Chemistry electives (from list above)
- Principles of Biochemistry (CHEM 420)
- Computer Programming and Problem Solving (MATH 211)
- Calculus III (MATH 225)
- Introduction to Linear Algebra and Differential Equations (MATH 228)
- Differential Equations (MATH 325)
- Physical Geology (SC 232)
- Mineralogy and Optical Mineralogy (SC 242)
- Environmental Geology (SC 362)
- Geochemistry (SC 403)
- Sedimentation and Stratigraphy (SC 457)
- Conservation Biology (see note 9)

Students interested in attending graduate school in environmental sciences should consider taking science electives beyond requirements of this major. For example, for admission into some graduate programs, a year of organic chemistry would be a requirement. Deviations from the approved list of science electives must be approved by the advisor for the major.

6. For this major, the University requirement of a second philosophy course will be fulfilled by one of these courses.
7. The economics requirement for this major is fulfilled by taking Introduction to Economics either in the first year (ECON 115) or in the sophomore year (ECON 225). Students who have taken ECON 123/123 (Principles of Economics I) will be required to take ECON 224 (Principles of Economics II). Note, the course ECON 180 (Social Science University Seminar) will not fulfill the economics requirement for this major.
8. For this major, the University social science requirement will be fulfilled by the required economics course.
9. Conservation Biology is an acceptable elective when taken by students who attend the International Studies Program at Columbia University’s Earth Semester at Biosphere 2 in Arizona.
10. The following courses are recommended as electives:
- Religious Ethics and the Environment (STV 270)
- Philosophy of Technology (STV 351)
- Nature in America (STV 371)
- Environment and Environmentalism in History (STV 375)
- Self, Society and the Environment (STV 419)
- Appropriate Technology and the 3rd World (STV 460)
- Ethics of Development (STV 462)
- The Environment: Science, Culture and Values (STV 472)
- Design and Ecology (STV 488)

The STV courses may be taken either under the STV label or from the primary departmental crosslist.

Sample Curriculum (B.S. Degree Majors): First Year
First Semester
- CHEM 117: General Chemistry I 4
- MATH 119: Calculus A 4
- FYC 110 3
- Theology* 3
- History* 3
- Physical Education/ROTC 17

277
Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 201: General Biology A</td>
<td>BIOS 202: General Biology B</td>
</tr>
<tr>
<td>BIOS 201L: General Biology A Lab</td>
<td>BIOS 202L: General Biology B Lab</td>
</tr>
<tr>
<td>SC 231: Physical Geology</td>
<td>CHEM elective or science elective</td>
</tr>
<tr>
<td>Language</td>
<td>Language</td>
</tr>
<tr>
<td>PHIL 247 or 256</td>
<td>Elective</td>
</tr>
</tbody>
</table>

* One of these must be a University Seminar 180.

Second Semester

<table>
<thead>
<tr>
<th>BIOS 201: General Biology A</th>
<th>BIOS 202: General Biology B</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 201L: General Biology A Lab</td>
<td>BIOS 202L: General Biology B Lab</td>
</tr>
<tr>
<td>SC 231: Physical Geology</td>
<td>CHEM elective or science elective</td>
</tr>
<tr>
<td>Language</td>
<td>Language</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 312: General Ecology</td>
<td>BIOS 411: Biostatistics</td>
</tr>
<tr>
<td>PHYS 221: General Physics I</td>
<td>PHYS 222: General Physics II</td>
</tr>
<tr>
<td>Elective (or Language)</td>
<td>Science Elective</td>
</tr>
<tr>
<td>Theology</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM elective or science elective</td>
<td>Science elective</td>
</tr>
<tr>
<td>Science elective</td>
<td>Science Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Notes (a continuation from above):

11. As is the case for science first majors, six credits of the science coursework in this program will also be counted toward the student’s university science requirement.

12. This requirement is satisfied by either one first course in physics (PHYS 115 or 131 or 151 or 221) or an approved survey course: Concepts of Energy and the Environment (PHYS 104) or Technological Risk (PHYS 176) or Energy and Society (PHYS 204).
Chemistry and Biochemistry

Chair:
A. Graham Lappin
George and Winifred Clark Professor of Chemistry:
Marvin J. Miller
Grace-Duplay Professor of Chemistry:
Thomas P. Fehlner
Charles L. Huisking Professor of Chemistry:
Xavier Creary
Kleiderer/Peard Professor of Biochemistry:
Francis J. Castellino
Julius A. Nieuwland Professor of Science:
J. Kerry Thomas
William K. Warren Professor of Chemistry:
W. Robert Scheidt
Clare Booth Luce Assistant Professor of Biochemistry:
Patricia L. Clark

Program of Studies. Chemistry is the science of substances that comprise the world about us and is concerned with their structure, their properties and the reactions that change them into other substances. Chemists and biochemists practice their profession in many ways—in educational institutions, government laboratories, consulting laboratories, private research institutions and foundations and in many industries, including the automobile, aircraft, metal, petroleum, chemical, plastics, drug, health, biotechnology, pharmaceutical and food industries.

The Department of Chemistry and Biochemistry has a strong undergraduate program together with a strong graduate education and research program. This graduate program greatly benefits undergraduate education by attracting highly qualified faculty and results in the availability of excellent research facilities and modern instrumentation necessary to train the scientists of tomorrow. This department is able to provide an excellent program of undergraduate research to complement regular coursework. Student participation in research is highly encouraged as a key part of the education of chemistry and biochemistry majors. The programs in chemistry and biochemistry described in the following pages prepare students for graduate studies and professional work in the chemical and biochemical sciences, as well as in interdisciplinary areas that rely heavily on chemistry. Bachelor of science degrees are offered with a major in chemistry and a major in biochemistry. At the graduate level, the Department of Chemistry and Biochemistry offers programs leading to the degrees of master of science and doctor of philosophy, as described in the Graduate School Bulletin of Information.

Bachelor of Science with a Major in Chemistry

The chemistry curriculum at Notre Dame includes two programs: the Chemistry Career Program, designed for students interested in a professional career in chemistry, and the Chemistry Combination Program, designed for those students who are interested in combining chemistry with business or with computing.

SUMMARY OF MINIMAL REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE IN CHEMISTRY AND BIOCHEMISTRY

<table>
<thead>
<tr>
<th>Program</th>
<th>Chemistry Career Program</th>
<th>Chemistry Combination Program</th>
<th>Biochemistry Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>45</td>
<td>45</td>
<td>31</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>—</td>
<td>—</td>
<td>19</td>
</tr>
<tr>
<td>Mathematics</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Physics</td>
<td>11.5</td>
<td>11.5</td>
<td>8</td>
</tr>
<tr>
<td>Science Electives</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total Required Science</td>
<td>77</td>
<td>74</td>
<td>77.5</td>
</tr>
<tr>
<td>Program Electives</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>89</td>
<td>77.5</td>
</tr>
<tr>
<td>Language</td>
<td>Intermediate Level Competency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FYC 110</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Philosophy</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Theology</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Literature/Fine Arts</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>History</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Free Electives</td>
<td>14++</td>
<td>2++</td>
<td>14++</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>124</td>
<td>124.5</td>
</tr>
</tbody>
</table>

* One of these courses must be a University Seminar 180.

++ Assumes Intermediate Level Competency in Language was achieved by taking three 3-credit courses.

All chemistry majors take the following basic sequence of courses:
General Chemistry (CHEM 125-126 recommended; or optionally, CHEM 113-114 or 117-118)
Organic Chemistry (CHEM 235, 235L, 236, 236L)
Inorganic Chemistry (CHEM 243, CHEM 443, 443L)
Physical Chemistry (CHEM 321, 321L, 322, 322L)
Analytical Chemistry (CHEM 333, 333L)
Physical Methods of Chemistry (CHEM 434)
Principles of Biochemistry (CHEM 420)
Chemistry Seminars (CHEM 201, 202), three semesters
Physics (PHYS 131, 132, 231)1
Calculus (MATH 125, 126 and 225)
In addition to this basic sequence, the following courses are required for each program.

Chemistry Career Program
Science Electives (six credit hours)2,3
Combination Program
Program Electives (15 credit hours)
Science Electives (three credit hours)1,2

The program electives for the Chemistry Combination Program are from either the area of business or from the area of computing and are the same as those in the corresponding Collegiate Sequence programs:

Chemistry with Business
Accounting and Accountancy I (ACCT 231)
Accounting and Accountancy II (ACCT 232)
Business Finance (FIN 231)
Introduction to Management (MGT 231)
Introduction to Marketing (MARK 231)
Introduction to Economics (ECON 115 or 225) is required, as a non-program elective, as a prerequi- site to MARK 231 and meets the University social science requirement.

Chemistry with Computing
Advanced Programming (CSE 232)
Discrete Mathematics (CSE 210)
Data Structures (CSE 331)
and
Functional Programming (CSE 233) and Database Concepts (CSE 346)
or Automata (CSE 411) and Algorithms (CSE 413)
or Automata (CSE 411) and Compilers (CSE 443)

Sample Curriculum (Career Program):
First Year
First Semester
CHEM 125 4
MATH 125 4
PHYS 131 4
FYC 110 3
History4 3
Physical Education/ROTC 0
— 18

Second Semester
CHEM 126 4
MATH 126 4
PHYS 132 4
Philosophy5 3
Elective 3
— 18

Second Semester
CHEM 236 3
CHEM 236L 2
CHEM 243 3
CHEM 2026 1
Language 3
Theology6 3
— 15

Junior Year
First Semester
CHEM 321 3
CHEM 321L 2
CHEM 333 3
CHEM 333L 2
CHEM 2014 1
Elective (or Language) 3
Theology 3
— 17

Second Semester
CHEM 322 3
CHEM 322L 2
CHEM 443 3
CHEM 443L 2
Philosophy 3
Elective 3
— 16

Senior Year
First Semester
CHEM 420 3
CHEM 434 3
Electives 6
Fine Arts or Literature 3
— 15

Second Semester
CHEM 443 3
CHEM 443L 2
Philosophy 3
Elective 3
— 16

Sample Curriculum (Combination Program):
First Year
First Semester
CHEM 125 4
MATH 125 4
PHYS 131 4
FYC 110 3
History4 3
Physical Education/ROTC 0
— 18

Second Semester
CHEM 126 4
MATH 126 4
PHYS 132 4
Philosophy5 3
Social Science6 3
Physical Education/ROTC 0
— 18

Sophomore Year
First Semester
CHEM 235 3
CHEM 235L 1
MATH 225 3.5
PHYS 231 3.5
Language 3
— 14

Second Semester
CHEM 236 3
CHEM 236L 2
CHEM 243 3
CHEM 2026 1
Language 3
Theology6 3
— 15

Junior Year
First Semester
CHEM 321 3
CHEM 321L 2
CHEM 333 3
CHEM 333L 2
CHEM 2014 1
Elective (or Language) 3
Theology 3
— 17

Second Semester
CHEM 322 3
CHEM 322L 2
CHEM 443 3
CHEM 443L 2
Philosophy 3
Elective 3
— 16

Senior Year
First Semester
CHEM 420 3
CHEM 434 3
Program Electives7 6
Elective 3
— 15

Second Semester
CHEM 443 3
CHEM 443L 2
Theology 3
Program Elective7 3
— 13

Notes:
1. Substitution with permission only.
2. Linear Algebra/Differential Equations (MATH 228) is a recommended science elective.
3. Undergraduate research, CHEM 498R, is a recommended science elective in all programs be- ginning in the junior year with typically one or two credits per semester.
4. The student should take three general requirement courses during the first year, including one course that is designated a University Seminar 180. Economics is required for the Chemistry with Business program.
Sample Curriculum (Biochemistry Program):

First Year

First Semester
- CHEM 125 4
- MATH 125 4
- BIOS 155 4
- FYC 110 3
- History 3
- Physical Education/ROTC 0

Second Semester
- CHEM 126 4
- MATH 126 4
- BIOS 156 4
- Philosophy 3
- Social Science 3
- Physical Education/ROTC 0

Sophomore Year

First Semester
- CHEM 247 4
- CHEM 247L 1
- PHYS 221 4
- MATH 225 3.5
- Language 3

Second Semester
- CHEM 248 4
- CHEM 248L 1
- PHYS 222 4
- CHEM 202 1
- CHEM 212 0
- Language 3
- Theology 3

Junior Year

First Semester
- CHEM 321 3
- CHEM 341 3
- CHEM 341L 2
- CHEM 201 1
- BIOS 250 4
- Elective (or Language) 3

Second Semester
- CHEM 322 3
- CHEM 342 3
- BIOS 241 4
- Philosophy 3
- Elective 3

Senior Year

First Semester
- CHEM 333 2
- CHEM 333L 2
- BIOS 418 3
- Theology 3
- Elective 3

Second Semester
- CHEM 202 1
- Fine Arts or Literature 3
- Electives 8

Notes (a continuation from above):
8. For alternative physics, take PHYS 131, 132.
9. BIOS 201, 201L, 202, and 202L are alternative choices for the sophomore year.

COURSE DESCRIPTIONS

CHEMISTRY AND BIOCHEMISTRY COURSE DESCRIPTIONS

The following course descriptions give the number and title of each course. Lecture hours per week, laboratory and/or tutorial hours per week and credits each semester are in parentheses.

Chemistry Survey Courses (101-104)

These courses each satisfy one semester of the University science requirement and are designed for students planning programs in areas other than science and engineering. CHEM 101, 103 and 104 assume no previous knowledge of chemistry.

101. Foundations of Chemistry

(3-0-3)

This course covers forms, properties and separation of matter, atomic structure and periodicity, nuclear chemistry, chemical bonding and structure, reactivity with applications to acid-base and oxidation-reduction reactions, chemistry of carbon and living systems. This course is not open to students who have taken CHEM 103, 113, 115 or 117.

102. Chemistry, Environment and Energy

(3-0-3)

Prerequisite: CHEM 101 or permission of the instructor.

Chemistry of the atmosphere, hydrosphere and lithosphere, agricultural chemistry and pesticides, food and drugs, hazardous and solid wastes, recycling. Fossil fuels; nuclear, solar, geothermal and other types of energy. This course is not open to students who have taken CHEM 114, 116 or 118.

103. Chemistry in Society

(3-0-3)

This course introduces students to the chemical component of various interests and concerns of our society. In the context of this introduction, it acquaints students with some of the basic conceptual tools that chemists use, such as ideas of bonding in chemical compounds, the chemical view of acids and bases, and calculation of the amount of material consumed or produced in a chemical reaction. The ozone layer, global warming, solar energy, plastics and nutrition are among the topics to be covered. This course is not open to science majors and students who have taken CHEM 101, 102, 113, 115 or 117.

104. Light: Principles and Applications

(3-0-3)

The course is designed to provide the student with an understanding of the nature of light, its interaction with matter and the consequences of this interaction in everyday phenomena as well as in the newer technologies such as lasers, photodynamic therapy, photo-imaging and photolithography, holography, and solar energy storage. Discussions of everyday phenomena would include photosynthesis, color and dyes, polarized light, photochemical smog and the ozone layer, optical activity and structure, vision, and photochromism. Necessary concepts of chemistry, physics and biology will be provided. This course is not open to science and engineering majors.

113-114. General Chemistry I-T and II-T Lecture, Tutorial and Laboratory

(3-4-4) (3-4-4)

Prerequisites: High school chemistry and physics, three-and-one-half units of high school mathematics.

Introduction to the principles and concepts of chemistry and its application in the world. Topics include periodic properties of the elements, reaction stoichiometry, atomic theory, molecular structure and bonding, acids and bases, reduction-oxidation reactions, gas-laws, thermochemistry.
equilibrium, and chemical kinetics. Lectures, demonstrations, laboratory experiments and tutorial sections are integrated to promote a deeper understanding of chemistry fundamentals and to develop the analytical skills necessary for solving problems. In the weekly tutorials, students work in small groups at solving problems collaboratively. The general topics, textbook and laboratory are the same as those for CHEM 117-118. CHEM 114 will serve as a prerequisite course to all upper-level courses which list CHEM 118 or CHEM 126 as a prerequisite.

115-116. General Chemistry I and II Lecture (3-0-3) (3-0-3)
Prerequisites: High school chemistry and physics, three-and-one-half units of mathematics. Designed for first-year students intending to major in science and engineering. This lecture course covers classical/modern chemistry, with applications, in the approximate order: stoichiometry and classical atomic theory of chemistry; periodic properties; gas laws; chemical equilibrium; solution chemistry (acids and bases, solubility, physical properties of solution); thermochemistry; chemical kinetics; modern quantum theory of atomic and molecular structure and periodic properties. Descriptive chemistry is included throughout in all developments. Frequent live demonstrations and classroom computer use emphasize the unifying experimental and theoretical aspects of the subject.

117-118. General Chemistry I and II Lecture and Laboratory (3-3-4) (3-3-4)
Identical to CHEM 115-116 except for including a laboratory. The lab introduces experimental chemistry with examples from all areas of chemistry. The experiments range from traditional wet chemistry to modern instrumental analysis. The lab consists of prelab lecture and individual laboratory work. In both semesters, computers are integrated into the experiments. The computer programs are intended to promote certain problem-solving skills and provide experimental simulation not possible within the time constraints of the normal laboratory period.

119L-120L. General Chemistry Laboratory (0-3-1) (0-3-1)
A laboratory identical to that presented in conjunction with CHEM 117-118. Designed for students needing laboratory but having previously taken CHEM 115-116.

125-126. General Chemistry I-M and II-M Lecture and Laboratory (3-3-4) (3-3-4)
Prerequisites: High school chemistry and physics; three-and-one-half units of mathematics. Corequisite: MATH 125-126. A course in modern chemistry recommended for students with a special interest in the subject, especially those intending to major or wishing to explore a major in chemistry or biochemistry. A thorough and rigorous study which integrates the class and laboratory work closely, seeking to emphasize the unifying experimental and theoretical aspects of the subject. Realistic historical and contemporary examples, including some taken from research done at Notre Dame, provide a basis for a critical understanding of the evolving nature of this science and of its importance in the modern world. Students will work extensively with class and laboratory materials developed especially for this course, with computers, and with library and Internet research resources.

191. Chemistry and Public Policy (3-3-4)
Prerequisites: High school chemistry or permission of instructor. This one-semester course is intended for students in the Honors program who are not majoring in science or engineering. Several projects focus the class on the interplay between scientific knowledge and law, business, politics and ethics. Students are placed in the dual roles of scientists gathering and evaluating data and of policymakers trying to use these data to make decisions. The projects involve laboratory experiments, guest lectures, problem-solving sessions, field trips, reading, research, class discussions and presentations, and writing. Topics change each year; past projects have included finding out whether dangerous chemicals are leaching from the Notre Dame coal tip, and debating the ratification of a treaty to ban chemical weapons.
CHEMISTRY AND BIOCHEMISTRY

201 or 202. Chemistry Seminar
(1-0-1) (1-0-1)
To be taken either semester of the sophomore through senior years. Introduction to the communication of scientific knowledge.

204. Environmental Chemistry
(3-0-3)
Prerequisites: CHEM 116, 118 or 126, or consent of instructor.
Discussion of basic chemical processes occurring in the environment, particularly those relating to the impact of humanity’s technological enterprise.

212. Biochemistry Seminar
(1-0-0)
A zero-credit seminar course offered in the spring term for sophomore biochemistry majors only. The seminar seeks to acquaint the biochemistry majors with (1) the biochemistry faculty members, (2) the types of research programs in biochemistry that are being carried out in the department and (3) some general biochemistry concepts. The class will meet once every two weeks, and each meeting will be conducted by a different member of the biochemistry faculty.

223-224. Elementary Organic Chemistry I and II
(3-0-3) (3-0-3)
Prerequisites: CHEM 114, 116, 118 or 126.
Elements and principles of organic chemistry, with emphasis on structure-reactivity relationships.

223L-224L. Elementary Organic Chemistry Laboratory I and II
(0-3-1) (0-3-1)
To be taken concurrently with CHEM 223-224. Organic reactions and procedures.

235-236. Organic Chemistry M I and II
(3-0-3) (3-0-3)
Prerequisites: CHEM 114, 116, 118 or 126.
A thorough treatment of the basic principles of organic chemistry, including modern structural concepts, the effect of structure on physical and chemical properties, reactions, and their mechanisms and applications in synthesis. Intended primarily for chemistry majors.

235L. Organic Chemistry M Laboratory I
(1-3-1)
Corequisite: CHEM 235.
A course designed to introduce students to the laboratory techniques of organic chemistry.

236L. Organic Chemistry M Laboratory II
(1-6-2)
Prerequisite: CHEM 235L.
Corequisite: CHEM 236.
Fundamental organic reactions and the preparation of organic compounds.

243. Inorganic Chemistry
(3-0-3)
Prerequisites: CHEM 114, 116, 118 or 126.
Descriptive chemistry of both main group and transition metal elements, emphasizing periodic trends in structure and reactivity and using the concepts of atomic theory, elementary bonding theory and ligand field theory. Introduction to inorganic thermodynamics and solution chemistry.

247-248. Organic Chemistry I and II
(4-0-4) (4-0-4)
Prerequisites: CHEM 114, 116, 118 or 126.
Prerequisite or corequisite: BIOS 156 or 201. (For sophomore biology and biochemistry majors only.)
Basic principles of organic chemistry, including structure, stereochemistry, reaction mechanisms, synthesis, and reactions of important classes of organic compounds and their relationships to biochemical and biological systems. For students having an interest in chemistry as it relates to the life sciences.

247L-248L. Organic Chemistry Laboratory I and II
(0-3-1) (0-3-1)
Corequisite: CHEM 247-248.
Introduction to laboratory techniques of organic chemistry and related biochemical applications.

321-322. Physical Chemistry I and II
(3-0-3) (3-0-3)
(For science majors only.)
Prerequisites: CHEM 114, 116, 118 or 126; MATH 126 or 166; and PHYS 128 or 222.
A rigorous course in the fundamentals of physical chemistry, including chemical thermodynamics, kinetics and the elements of atomic and molecular structure.

321-322L. Physical Chemistry Laboratory I and II
(0-4-2) (0-4-2)
Prerequisites: To be taken concurrently with CHEM 321-322.
A course in the experimental aspects of physical chemistry, using modern techniques of measurement. The first semester emphasizes thermodynamic and kinetic measurements. The second semester emphasizes spectroscopic measurements, including electronic, infrared, Raman and nuclear magnetic resonance spectroscopies, and measurements in reaction dynamics.

324. Physical Chemistry for Engineers
(3-0-3)
Prerequisites: CHEM 114, 116, 118 or 126; PHYS 229; MATH 225.
A course in the fundamentals of physical chemistry, emphasizing theoretical and experimental aspects of reaction kinetics, an introduction to quantum theory and a critical appreciation of the nature of the chemical bond. The course also explores how spectroscopic techniques allow us to gain insight into the structure and properties of molecules. Spring.

333. Analytical Chemistry
(2-0-2) (2-0-2)
Prerequisite: CHEM 114, 116, 118 or 126.
Corequisite: CHEM 333L.
Volumetric and gravimetric analysis and methods of separation integrated with instrumental analysis.

333L. Analytical Chemistry Laboratory
(0-4-2) (0-4-2)
Corequisite: CHEM 333.
A laboratory course in the techniques of analytical chemistry.

337. Physical Chemistry for Life Sciences
(3-0-3)
Prerequisites: CHEM 114, 116, 118 or 126; MATH 120, 126, 166 or 196; and PHYS 128 or 222.
An elementary course in physical chemistry, dealing with states of matter, laws of thermodynamics, solutions, acid-base and oxidation-reduction equilibria, interphase equilibria and chemical kinetics.

341. Fundamentals of Biochemistry
(3-0-3)
Prerequisite: CHEM 236 or 248.
This course is offered for undergraduate biochemistry majors and is to be taken in the junior year. The course covers the basic chemical and physical principles of the primary biomolecules: protein, carbohydrates, lipids and nucleic acids. The structures and properties of these molecules and their relevance to biological processes will be integrated.

341L. Fundamentals of Biochemistry Laboratory
(0-6-2)
Prerequisite or Corequisite: CHEM 341.
This course is designed to let students explore some of the many techniques that are utilized in characterizing proteins, lipids, carbohydrates and ribonucleic acids. It exposes students to many state-of-the-art biochemical and computational methods for elucidating structural and functional properties of these important types of biochemicals. Research components are included in the major classes of experiments. Biochemistry majors only.

342. Intermediary Metabolism
(3-0-3)
Prerequisite: CHEM 341.
This course is offered for undergraduate biochemistry majors and is to be taken in the junior year. The course is a study of the major metabolic processes of carbohydrates, lipids, amino acids and nucleotides that occur in higher animals. Emphasis is placed on individual reactions and on the functional significance of the resulting metabolic pathways that occur in different tissues and organs. Methods of integration and regulation of the pathways are presented.

420. Principles of Biochemistry
(3-0-3)
Prerequisite: CHEM 224 or 236 or 248.
A general treatment of the various areas of modern biochemistry; intermediary metabolism, bioenergetics, molecular basis of genetic and developmental processes and cellular mechanisms. Not intended for biochemistry majors.

434. Physical Methods of Chemistry
(3-0-3)
Prerequisites: CHEM 333 and CHEM 236 and 236L.
A course in molecular structure examined through the theory and interpretation of spectra. The focus is on infrared, ultraviolet-visible, mass and nuclear magnetic resonance spectroscopies with an introduction to two-dimensional NMR, Raman, microwave, electron spin resonance and circular dichroism techniques.
Mathematics

Chair:
Stephen A. Buechler
Associate Chair:
Alan Howard
Director of Graduate Studies:
Federico Xavier
Director of Undergraduate Studies:
Juan Migliore

William J. Hank Family Professor of Mathematics:
William G. Dwyer
Charles L. Huisking Professor of Mathematics:
Julia F. Knight (on leave 2001-02)
Vincent J. Duncan and Annamarie Micu Duncan Professor of Mathematics:
Andrew Sommese
John A. Zahm, C.S.C., Professor of Mathematics:
Stephen A. Stolz (on leave 2001-02)
Kenna Associate Professor of Mathematics:
Xiaobo Liu

Professors:
Mark S. Alber; Steven A. Buechler; Jiangguo Cao; Francis X. Connolly; Leonid Faybusovich (on leave fall 2001); Alexander J. Hahn; Alex A. Himonas; Alan Howard; Bei Hu; Juan Migliore; Timothy O’Meara (Kenna Professor of Mathematics, emeritus, and provost emeritus); Richard R. Otter (emeritus); Barth Pollak (emeritus); Joachim Rosenthal; Mei-Chi Shaw; Brian Smyth; Dennis M. Snow; Nancy K. Stanton; Wilhelm Stoll (Duncan Professor of Mathematics, emeritus); Laurence R. Taylor; E. Bruce Williams; Pit-Mann Wong; Warren J. Wong; Frederico Xavier

Associate Professors:
Mario Borelli; Ferdinand L. Brown, C.S.C. (emeritus); Peter A. Cholak; John E. Derwent; Jeffrey Cao; Francis X. Connolly; Leonid Faybusovich; Matthew J. Dyer; Samuel R. Evens; Michael Gehrtman; Abraham Goetz (emeritus); Brian C. Hall; Qing Han; Cecil B. Mast (emeritus); Gerard K. Misiolek; Sergei Starchenko; Vladeta Vukovíc (emeritus)

Assistant Professors:
Katrina D. Barron; Karen A. Chandler; Jeffrey A. Diller; Richard Hind; George McNinch; David P. Nicholls; Liviu Nicolaescu (on leave 2001); Claudia Polini

Program of Studies. Mathematics has had a profound effect upon civilization since ancient times, when the legend originally inscribed on the entrance to Plato’s academy was “Let no one ignorant of geometry enter here.” It was equally true during the medieval period, when arithmetic and geometry constituted two of the seven subjects considered essential for a liberal education. It has been said that the second most influential book in the span of Western civilization — after the Bible — is Euclid’s Elements. Although mathematics is usually associated with science and technology in the modern mind, it seems apparent from the writings of the great mathematicians of the 17th and 18th centuries that religious belief played a great role in their pursuit of mathematics. They saw the “system of the world” obeying mathematical laws and as a consequence felt impelled to study mathematics so as to better appreciate the world’s Creator.

Mathematics continues to have a profound influence in our century. From the theory of relativity, with its applications to the study of the large scale structure of the universe, to the development of the modern computer, with its manifold applications in science, technology and business, mathematics has played a fundamental role. It is surely the most universal of all scientific tools, and the student equipped with a strong mathematical background will be in the enviable position of being able to employ his or her expertise in any area in which rigorous thought and precision of results are mandated.

The department is dedicated to the development of undergraduate studies, to the teaching of mathematics to scientists, engineers and teachers, to graduate education and research, and to the discovery of new mathematics. The entire faculty is involved with undergraduate affairs, and students have the opportunity of associating with scholars of international repute. Mathematics at Notre Dame provides students with a discipline of the mind and a stimulation of the imagination par excellence.

Programs in mathematics prepare students for graduate studies or for professional work in fields in which mathematics plays a dominant role. They provide an excellent preparation for law school, medical school, business school and secondary school teaching. Graduates may enter careers in research institutes or industrial or government positions.

In addition to its undergraduate programs, the department offers programs of graduate study leading to the degree of doctor of philosophy, as described in the Graduate School Bulletin of Information.

The department recognizes that, besides those students who wish to pursue a career devoted primarily to mathematical research and teaching, many will wish to take positions in business, industry or government where they will be using their mathematical skills in close collaboration with engineers as well as biological, physical and social scientists. These students will find among the listed programs one well suited to their needs. Besides these programs a student may, in consultation with the director of undergraduate studies and the department chair, create a program especially tailored to his or her career goals.

Bachelor of Science with a Major in Mathematics. The mathematics curriculum at Notre Dame includes nine course sequences or areas of concentration within the College of Science. These programs are designed to accommodate the academic and professional interests of all mathematics majors. Brief descriptions are given below, and more detailed descriptions of these programs are available on request from the Department of Mathematics.
SUMMARY OF REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

(For other programs see the Department of Mathematics)

<table>
<thead>
<tr>
<th>Program</th>
<th>Mathematics Core</th>
<th>Mathematics Career</th>
<th>Mathematics and Computing</th>
<th>Mathematics and Life Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics Program</td>
<td>46</td>
<td>42</td>
<td>42</td>
<td>39</td>
</tr>
<tr>
<td>Chemistry</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Physics</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Language Intermediate Level Competency</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>FYC 110</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Philosophy*</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Theology*</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Social Sciences*</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>History*</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Literature/Fine Arts*</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Engineering</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Free Electives</td>
<td>26”</td>
<td>30”</td>
<td>15”</td>
<td>16”</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>124</td>
<td>124</td>
<td>124</td>
</tr>
</tbody>
</table>

*One of these courses must be a University Seminar 180.
**Assumes Intermediate Level Competency in Language was achieved by taking three three-credit courses.

College Requirements: All must take the following College of Science courses: CHEM 117, 118; PHYS 131, 132; and an additional science elective. A student who takes two semesters of organic chemistry or two semesters of general biology is only required to take PHYS 221-222.

Mathematics Honors Program
This program is suited to students who are interested in graduate work in one of the mathematical sciences and to those whose career plans require a strong background in modern mathematics. Honors Calculus I (MATH 165)
Honors Calculus II (MATH 166)
Honors Calculus III (MATH 265)
Honors Calculus IV (MATH 266)
Honors Algebra I (MATH 261)
Honors Algebra II (MATH 262)
Honors Algebra III (MATH 361)
Honors Algebra IV (MATH 362)
Honors Analysis I (MATH 365)
Honors Analysis II (MATH 366)
Electives (12 credit hours with six at the 400 level)

Mathematics Courses for the Other Programs
All other mathematics programs (except the computing program) require the following mathematics core courses:
- Calculus I (MATH 125)
- Calculus II (MATH 126)
- Calculus III (MATH 225)
- Ordinary Differential Equations (MATH 230)
- Linear Algebra (MATH 221)
- Algebraic Structures (MATH 222)
- Real Analysis I (MATH 335)
- Real Analysis II (MATH 336)
- Computer Programming (MATH 211)

In addition to this basic sequence, the following courses are required for each program:

Mathematics Career Program
This program is designed to give students a general background in mathematics. In addition to the basic sequence of courses listed above, 12 hours of mathematics electives are required, at least three of which are at the 400 level.

Applied Mathematics Program
This program is designed for students interested in the broader area of applied mathematics. In addition to taking the core mathematics courses, the student is required to take 15 credits from the following list of courses, six credits of which must be at the 400 level: MATH 311, MATH 318, MATH 325, MATH 324; MATH 405, MATH 425, MATH 424, MATH 425, MATH 435, MATH 434, MATH 436 and MATH 441.

Mathematics and Life Sciences Program
This program is designed for mathematics majors who are interested in life-science-oriented careers.

The following mathematics courses are required in addition to the basic sequence of courses listed above:
- Introduction to Probability (MATH 323)
- Mathematical Statistics (MATH 324)
- Elective in Mathematics (three credit hours at the 400 level)

The following College of Science courses are required:
- Organic Chemistry (CHEM 223, 223L; 224, 224L)
- General Biology (BIOS 201, 201L; 202, 202L)
- Genetics (BIOS 303, 305L)

Mathematics and Computing Program
This program is designed for students who plan to pursue graduate study or industrial careers in computing science. All of the mathematics core courses listed above except MATH 211 are required, as well as 15 hours of mathematics electives, at least three hours of which are at the 400 level.

In addition, the student must complete one of the following sequences of computing courses:
- Software design option: CSE 232, CSE 210, CSE 331, CSE 334, CSE 346
- Theory option: CSE 232, CSE 210, CSE 331, CSE 411, CSE 413
- Theory and compilers option: CSE 232, CSE 210, CSE 331, CSE 411, CSE 443
- Computer architecture option: CSE 232, CSE 221, CSE 321, CSE 322.

Mathematics Education Program
This program is designed for students who plan a career in secondary education. The following mathematics courses are required in addition to the basic sequence listed above:
- Introduction to Probability (MATH 323)
- Mathematical Statistics (MATH 324)
- Elective in Geometry (three credit hours)
- Elective in Mathematics (three credit hours)
 (One of these classes must be at the 400 level)

The following education courses are to be taken at Saint Mary’s College: EDUC 201, 220, 340, 350, 356, 404, 451, and 475.

Mathematics and Business Administration Program
This program is designed to prepare students for a career in business or in the actuarial profession. The following mathematics courses are required in addition to the basic sequence:
- Introduction to Probability (MATH 323)
- Mathematical Statistics (MATH 324)
- Introduction to Operations Research (MATH 311)
- Elective in Mathematics (three credits at the 400 level)
Also required are ECON 225 or its equivalent and the following courses from the College of Business: ACCT 231, FIN 231, MARK 231, MGT 231 and one course from the following list: ACCT 232, FIN 360, FIN 361, FIN 370, MGT 350, MGT 473, MARK 370.

Mathematics and Engineering Science Program
This program is designed for students interested in applied or industrial mathematics. In addition to the mathematics core courses, the student is required to take one of MATH 425, MATH 423 or MATH 436, and nine more credits of mathematics electives. The student must also complete one of the following two sequences of engineering classes:

Thermal option: AME 225, AME 226, AME 334, AME 327, AME 439
Structures and design option: AME 225, CE 236, AME 327, CE 336, CE 356

Mathematics and Social Science Program
This program is designed for students planning graduate school or a career in one of the social sciences with a strong mathematics and statistics background. In addition to the basic sequence, the following mathematics courses are required:

* Students majoring in finance and business economics may reduce the number of mathematics electives to nine credits total by taking the following courses: MATH 323, MATH 324 and MATH 517.

Sample Curriculum (Mathematics Career Program):
First Year
First Semester
MATH 125: Calculus I 4
CHEM 117: General Chemistry I 4
PHYS 131: General Physics I 4
History or Social Science 4
FYC 110 3
Physical Education or ROTC —
—
— 18
Second Semester
MATH 126: Calculus II 4
CHEM 118: General Chemistry II 4
PHYS 132: General Physics II 4
History or Social Science 3
Philosophy or Theology 3
Physical Education or ROTC —
—
— 18
Sophomore Year
First Semester
MATH 221: Linear Algebra 3
MATH 225: Calculus III 3.5
Language 3
Philosophy or Theology 3
Science Elective 3
—
—
— 15.5
Second Semester
MATH 211: Computer Programming and Problem Solving 3
MATH 222: Algebraic Structures 3
MATH 230: Ordinary Differential Equations 3.5
Language 3
Philosophy or Theology 3
Elective 3
—
—
— 15.5
Junior Year
First Semester
MATH 335: Real Analysis I 3
Mathematics elective 3
Language 3
Philosophy or Theology 3
Elective 3
—
—
— 15
Second Semester
MATH 336: Real Analysis II 3
Literature or Fine Arts 3
Electives 9
—
—
— 15
Senior Year
First Semester
Mathematics electives 6
Electives 9
—
—
— 15
Second Semester
Mathematics elective 3
Electives 9
—
—
— 12

Karen A. Chandler, assistant professor of mathematics
1 The student should take three general requirement courses during the first year, including one course that is designated a University Seminar 180. It is recommended that one course in history or social science be taken in the first year and one philosophy and one theology course be taken by the end of the sophomore year.

MATHEMATICS COURSE DESCRIPTIONS

The following course descriptions give the number and title of each course. Lecture hours per week, laboratory and/or tutorial hours per week and credits each semester are in parentheses.

103. Processes of Mathematical Thought (3-0-3)
For students in arts and letters or business administration.
A study of mathematical thought as an analytical tool to solve real-life problems. The class is divided into teams, each analyzing a topic from such areas as commercial games, consensus within diversity, governmental economic planning and chaos theory. Teams will present their findings in a seminar format. This course satisfies one semester of the University science requirement but does not count toward the University mathematics requirement.

104. Finite Mathematics (3-0-3)
For students in arts and letters or as an elective for students in business administration.
Elements of probability, statistics and matrix theory, with applications including Markov chains, game theory and mathematics of finance.

105. Elements of Calculus I (3-0-3)
For students in arts and letters, architecture, or business.
A study of differential calculus as part of a liberal education. Topics include functions and their graphs, derivatives, and applications.

107. Principles of Finite Mathematics (3-0-4)
For students in arts and letters.
For first-year students who lack the necessary background for MATH 104. (Students who take this course can take MATH 104.) Topics include elementary probability, data analysis, statistical inference and information codes.

108. Elements of Calculus II for Business (3-0-3)
Prerequisite: MATH 105 or equivalent, but no prior MATH 110. Credit is not given for both MATH 108 and either of the following courses: MATH 110 and MATH 120. For students in business.
An introduction to the basic concepts of integral calculus, with emphasis on problems arising in business and economics.

110. Elements of Calculus II in Basic Sciences (3-0-3)
Prerequisite: MATH 105 or equivalent. Credit is not given for both MATH 110 and either of the following courses: MATH 108 and MATH 120.
For students in arts and letters or architecture.
An introduction to the basic concepts of integral calculus, with emphasis on problems arising in the basic sciences.

111. Principles of Calculus (3-0-4)
For students in arts and letters.
A terminal course introducing the principles of calculus. Topics include basic properties of functions, derivatives and integrals. This course is not intended to prepare students for more advanced work in calculus.

112. Beginning Logic (3-0-3)
For students in arts and letters.
An introduction to formal languages, systems of proof, and symbolic logic.

113. The Mathematical Way of Thinking (3-0-3) Banchoff
An introduction to mathematical concepts and reasoning through the study of geometry beyond the third dimension, with applications to other branches of mathematics, as well as physical, biological, and cognitive sciences, literature, philosophy, and art. Accessible to students in humanities and social sciences. Counts toward the University mathematics requirement for students in the College of Arts and Letters and as a general elective for students in the Mendoza College of Business. Not open to students in the College of Science or the College of Engineering.

119-120. Calculus A and B (3-1-4) (3-1-4)
Primarily for students in science whose programs require a one-year terminal course in calculus of one variable but also open to students in arts and letters. Topics include sets, functions, limits, continuity, derivatives, integrals and applications.

125-126. Calculus I and II (3-1-4) (3-1-4)
For students in science and engineering.
Topics include sets, functions, limits, continuity, derivatives, integrals and applications. Also covered are transcendental functions and their inverses, infinite sequences and series, parameterized curves in the plane and polar coordinates.

165-166. Honors Calculus I and II (4-0-4) (4-0-4)
Required of honors mathematics majors.
A rigorous course in differential and integral calculus of one variable. Topics include an axiomatic formulation of the real numbers, mathematical induction, infima and suprema, functions, continuity, derivatives, integrals, infinite sequences and series, transcendental functions and their inverses, and applications. The course stresses careful mathematical definitions and emphasizes the proofs of the standard theorems of the subject.

195-196. Honors Mathematics I and II (4-0-4) (4-0-4)
Open only to students in the Arts and Letters/Science Honors Program.
A survey of several mathematical topics, emphasizing the relevance of mathematics to many diverse areas of study. Calculus is also studied at the level of MATH 119-120.

211. Computer Programming and Problem Solving (3-0-5)
Prerequisite: MATH 221 or MATH 261 or equivalent.
An introduction to solving mathematical problems using computer programming in high-level languages such as C. For mathematics majors, credit is not given for both MATH 211 and CSE 232.

214. Introduction to Statistics (3-0-3)
Prerequisite: MATH 120 or equivalent.
An introduction to the principles of statistical inference following a brief introduction to probability theory. This course does not count as a science or mathematics elective for mathematics majors.
NOTE: Students may not take both BIOS 411 and MATH 214. Not open to students who have taken MATH 324.

221. Linear Algebra (3-0-3)
Open to all students.
An introduction to vector spaces, matrices, linear transformations, inner products, determinants and eigenvalues. Emphasis is given to careful mathematical definitions and understanding the basic theorems of the subject.
Credit is not given for both MATH 221 and MATH 228.

222. Algebraic Structures (3-0-3)
Prerequisite: MATH 221 or consent of instructor.
An introduction to groups, rings and fields, homomorphisms, ideals, polynomial rings and extensions fields. Emphasis is given to careful mathematical definitions and understanding the basic theorems of the subject.
225. Calculus III
(3-1-3.5)
Prerequisite: MATH 126 or equivalent.
A comprehensive treatment of differential and integral calculus of several variables. Topics include space curves, surfaces, functions of several variables, partial derivatives, multiple integrals, line integrals, surface integrals, Stokes’ theorem and applications.

228. Introduction to Linear Algebra and Differential Equations
(3-1-3.5)
Prerequisite: MATH 225.
An introduction to linear algebra and to first- and second-order differential equations. Topics include elementary matrices, LU factorization, QR factorization, the matrix of a linear transformation, change of basis, eigenvalues and eigenvectors, solving first-order differential equations and second-order linear differential equations, and initial value problems.

This course is part of a two-course sequence that continues with MATH 325. Credit is not given for both MATH 228 and MATH 221.

230. Ordinary Differential Equations
(3-1-3.5)
Prerequisite: MATH 225 and MATH 221.
An introduction to differential equations. Topics include first-order equations, n-th order linear equations, power series methods, systems of first order linear equations, non-linear systems and stability.

Credit is not given for both MATH 230 and MATH 325.

261-262. Honors Algebra I and II
(3-0-3) (3-0-3)
Prerequisite: MATH 166.
A comprehensive treatment of groups, polynomials, rings, homomorphisms, isomorphism theorems, field theory, and Galois theory. The course stresses careful mathematical definitions and understanding the proofs of the standard theorems of the subject.

265-266. Honors Calculus III and IV
(4-0-4) (4-0-4)
Prerequisite: MATH 166.
Required of honors mathematics majors. A rigorous course in differential and integral calculus of several variables. Topics include functions of several variables, the inverse function theorem, partial derivatives, multiple integrals, line integrals, surface integrals, Stokes’ theorem, and an introduction to ordinary differential equations and applications. The course stresses careful mathematical definitions and emphasizes the proofs of the standard theorems of the subject.

311. Introduction to Operations Research
(3-0-3)
Prerequisite: MATH 221 or equivalent.
An introduction to linear programming, duality theory, simplex algorithm, the transportation problem, network analysis, dynamic programming and game theory.

312. Probabilistic Models in Operations Research
(3-0-3)
Prerequisite: MATH 323 or equivalent.
An introductory survey of probability theory, queuing theory, inventory theory, Markovian decision theory and applications.

318. Introduction to Numerical Methods
(3-0-3)
Prerequisites: MATH 228 or MATH 230 and MATH 211 or CSE 232.
An introduction to numerical methods for solving algebraic and differential equations. Topics include numerical solution of systems of linear equations, approximating functions with polynomials and splines, solutions of nonlinear equations, numerical integration, numerical solution of ordinary differential equations and eigenvalue problems. Some computer programming is required. Credit is not given for both MATH 318 and MATH 423 or PHYS 333.

323. Introduction to Probability
(3-0-3)
Prerequisite: MATH 225 or equivalent.
An introduction to the theory of probability, with applications to the physical sciences and engineering. Topics include discrete and continuous random variables, conditional probability and independent events, generating functions, special discrete and continuous random variables, laws of large numbers and the central limit theorem. The course emphasizes computations with the standard distributions of probability theory and classical applications of them.

324. Mathematical Statistics
(3-0-3)
Prerequisite: MATH 323 or equivalent.
An introduction to mathematical statistics. Topics include distributions involved in random sampling, estimators and their properties, confidence intervals, hypothesis testing including the goodness-of-fit test and contingency tables, the general linear model and analysis of variance.

325. Differential Equations
(3-0-3)
Prerequisite: MATH 228.
A second course in differential equations. Topics include higher order linear equations, numerical methods, Laplace transforms, linear systems, non-linear systems and stability, and an introduction to partial differential equations and Fourier series. Credit is not given for both MATH 230 and MATH 325.

335-336. Real Analysis I and II
(3-0-3) (3-0-3)
Prerequisite: MATH 225 or equivalent.
A precise treatment of fundamentals of differential and integral calculus. Topics include sequences, limits, continuity, differentiability, convergence of sequences of functions, infinite series, and the Riemann-Stieltjes integral. Emphasis is given to careful mathematical definitions and understanding the basic theorems of the subject.

361-362. Honors Algebra III and IV
(3-0-3) (3-0-3)
Required of honors mathematics majors.
Prerequisite: MATH 262 or equivalent.
A comprehensive treatment of groups, polynomials, rings, homomorphisms, isomorphism theorems, field theory, and Galois theory. The course stresses careful mathematical definitions and emphasizes the proofs of the standard theorems of the subject.

365-366. Honors Analysis I and II
(3-0-3) (3-0-3)
Required of honors mathematics majors.
Prerequisite: MATH 266 or equivalent.
An advanced course in mathematical analysis in one and several variables. Topics include an axiomatic formulation of the real and complex number systems, compactness, connectedness, metric spaces, limits, continuity, infinite sequences and series, differentiation, the Riemann-Stieltjes integral, the Stone-Weierstrass theorem, the implicit function theorem, differential forms, partitions of unity, simplices and chains, and Stokes’ theorem.

405. Basic Combinatorics
(3-0-3)
Prerequisite: MATH 225.
An introduction to the theory of combinatorics. Topics include permutations, multinomial coefficients, the theory of enumerative combinatorics, pairing problems, recurrence relations, the inclusion-exclusion principle, graph theory, algebraic coding theory and symbolic dynamics.

411-412. Topics in Computing
(3-0-3) (3-0-3)
Topics in scientific computing, artificial intelligence, computer graphics and file processing.

421. Introduction to Algebraic Geometry
(3-0-3)
Prerequisites: MATH 225, MATH 221, MATH 222.
An introduction to algebraic geometry. Topics include the projective line and plane over the real and complex numbers, algebraic plane curves, tangent lines and singular points, fractional linear transformations, basic elimination theory, affine varieties and their rings of functions, the Nullstellensatz, Groebner bases, and the theory of symmetric functions.
423-424. Numerical Analysis
(3-0-3) (3-0-3)
Prerequisite: Programming knowledge and MATH 230 or MATH 325 or MATH 266 or consent of instructor.
An introduction to the numerical solution of ordinary and partial differential equations. Topics include the finite difference method, projection methods, cubic splines, interpolation, numerical integration methods, analysis of numerical errors, numerical linear algebra and eigenvalue problems, and continuation methods.

425. Complex Variables
(3-0-3)
Prerequisite: MATH 225 or equivalent.
An introduction to the theory of functions of one complex variable. Topics include analytic functions, Cauchy integral theorems, power series, Laurent series, poles and residues, applications of conformal mapping, and Schwarz-Christoffel transformations.

431. Theory of Numbers
(3-0-3)
Prerequisite: MATH 222 or MATH 262, or equivalent.
An introduction to elementary number theory. Topics include the Euclidean algorithm, congruencies, primitive roots and indices, quadratic residues, quadratic reciprocity, distribution of primes, and Waring's problem.

432. Topics in Algebra
(3-0-3)
Topics in algebra, number theory and algebraic geometry.

433. Modeling and Industrial Mathematics
(3-0-3)
Prerequisite: Programming knowledge and MATH 230 or MATH 325 or consent of instructor.
An introduction to mathematical analysis and numerical computation used in industry today. Topics are chosen from such subjects as crystal precipitation, air quality modeling, color film development and photocopy machines.

434. Topics in Applied Mathematics
(3-0-3)
Topics in analytic and numerical methods applied to problems in mechanics, electrostatics and heat flow.

435. Topics in Analysis
(3-0-3)
Topics in analysis, differential equations and measure theory.

436. Partial Differential Equations
(3-0-3)
Prerequisite: MATH 230 or MATH 325 or equivalent.
An introduction to partial differential equations. Topics include Fourier series, solutions of boundary value problems for the heat equation, wave equation and Laplace's equation, Fourier transforms, and applications to solving heat, wave and Laplace's equations in unbounded domains.

437. Topics in Geometry
(3-0-3)
Prerequisite: MATH 225 or equivalent.
An introduction to geometry. Topics include non-Euclidean geometry, projective geometry, algebraic geometry of curves, finite geometries, transformation groups in low dimensions, and the crystallographic groups.

438. Differential Geometry
(3-0-3)
Prerequisite: MATH 230 or MATH 325 or equivalent.
An introduction to differential geometry. Topics include analysis of curves and surfaces in space, the first and second fundamental forms of surfaces, torsion, curvature and the Gauss-Bonnet theorem.

441. Computability and Logic
(3-0-3)
Prerequisite: MATH 126 or equivalent.
An introduction to formal notions of computability. Topics include finite automata, regular languages and expressions, pushdown automata, context-free grammars and languages, Turing machines, primitive recursive and μ-recursive functions, Church's Thesis, and absolutely unsolvable problems. For mathematics majors, credit is not given for both MATH 441 and CSE 411.

461-462. Algebraic and Analytic Number Theory
(3-0-3) (3-0-3)
Prerequisites: MATH 362 and 366 or equivalent.
An introduction to algebraic and analytic number theory. Topics include quadratic reciprocity, diophantine equations, continued fractions, algebraic numbers, the Dirichlet unit theorem, quadratic, cyclotomic extensions, primes in progressions, and the prime number theorem.

463-464. Probability
(3-0-3) (3-0-3)
Prerequisite: MATH 366 or consent of instructor.
A high-level introduction to the theory of probability. Topics include measure theory, probability space, independence, random variables, combinatorial probability, limit laws and Markov chains.

465-466. Complex Analysis
(3-0-3) (3-0-3)
Prerequisite: MATH 366 or equivalent.
A high-level introduction to the theory of functions of one complex variable. Topics include analytic functions, Cauchy's theorem, Taylor series, Laurent series, singularities, residue theory, conformal mapping, analytic continuation, Riemann surfaces, entire functions and meromorphic functions.

468. Topology
(3-0-3)
Prerequisites: MATH 222 and 225 or equivalent.
An introduction to topology. Topics include the theory of surfaces, knot theory, and the theory of metric spaces.

469. Topics in Mathematical Logic
(3-0-3)
Prerequisite: MATH 126 or equivalent.
An introduction to mathematical logic. Topics include model theory, computability theory, and set theory.
Physics

Chair:
Bruce A. Bunker
Assistant Chair
and Director of Undergraduate Studies:
Mitchell R. Wayne
Frank M. Freimann Professor of Physics:
Walter R. Johnson
Frank M. Freimann Professor of Physics:
Michael C.F. Wiescher
Grace-Rupley Professor of Physics:
Alejandro Garcia
Emil T. Hoffman Professor of Physics:
Peter J. Borelli
Aurora and Tom Marquez Professor of Physics:
Jacek K. Furdyna

Professors:
Ani Aprahamian; Gerald B. Arnold; H. Gordon Berry; Ikaro I. Bigi; Howard A. Blackstead; Samir K. Bose (on leave 2001-02); Connor E. P. Browne (emeritus); Bruce A. Bunker; Neil M. Cason; Paul R. Chagnon (emeritus); James T. Cushing; Sperry E. Darden (emeritus); Margaret Dobrowolska-Furdyna; Stefan G. Frauenfeld; Emerson G. Funk (emeritus); Umesh Garg; Anthony K. Hyder; Gerald L. Jones; V. Paul Kenney (emeritus); James J. Kolara; A. Eugene Livingston; John M. LoSasso; Eugene R. Marshall; Grant Mathews; William D. McGlenn (emeritus); John W. Mihelich (emeritus); Kathie E. Newman; John A. Poirier (emeritus); Terrence W. Retrig; Randal C. Rucht; Jonathan R. Sapirstein; William D. Shephard; Walter J. Tomasch (emeritus); Mitchell R. Wayne

Associate Professors:
James A. Glazier; Steven T. Ruggiero (on leave 2001-02); Paul E. Shanley (emeritus); Carol E. Tanner (on leave 2001-02)

Assistant Professors:
Peter M. Garnavich; Michael D. Hildreth; Christopher F. Kolda; Boldizar Jankó

Program of Studies. Physics is the study and the description of the structure and the behavior of the physical universe. As such, it is fundamental to all physical sciences, pure and applied. A knowledge of physics is basic to an understanding of astronomy, chemistry, geology and even biology in that physics contributes to the interpretation and detailed description of many of the natural phenomena which constitute the proper subjects of investigation in these sciences.

In addition to the undergraduate curricula, the Department of Physics offers programs for graduate study leading to the degrees of master of science and doctor of philosophy, as described in the Graduate School Bulletin of Information.

Bachelor of Science with a Major in Physics. The physics curriculum at Notre Dame consists of five course sequences or programs. These programs are designed to accommodate the academic and professional interests of the majority of physics majors. Students with alternative interests are encouraged to discuss special programs with the departmental chair.

All physics majors take the following basic sequence of courses:

- General Physics (PHYS 151, 151L, 152, 152L, 253, 253L)
- Mechanics I (PHYS 250)
- Modern Physics (PHYS 260, 261)
- Electricity and Magnetism (PHYS 356)
- Modern Physics Lab I (PHYS 442)
- Senior Seminar I (PHYS 447)
- General Chemistry (CHEM 117, 118)
- Mathematics (MATH 125, 126, 225, 228, 325 or 325L, 325, 325L or 325, 325L, 326, 225, 226L, 266 and one additional upper-level math course)

Physics or Mathematics three-credit elective (as defined below)

In addition to the basic sequence of courses, the following courses are required for each program.

Career Program

The Career Program is designed for students who intend to do graduate work in physics or in astronomy, or who intend to seek employment as professional physicists at the bachelor level.

In addition to the physics core courses, majors in the career program are required to complete the additional following courses:

- Mechanics II (PHYS 251)
- Thermal Physics (PHYS 452)
- Electromagnetic Waves (PHYS 357)
- Modern Physics Lab II (PHYS 443)
- Quantum Mechanics I (PHYS 453)

The other physics or mathematics three-credit elective is selected with the advisor’s consent from the following: MATH 425, and physics courses numbered 231-299, 331-399 or 431-489. Students are strongly encouraged to follow the sample curriculum that follows.

(The required physics or mathematics three-credit elective for the other physics programs is to be selected with the advisor’s consent from the additional required courses for physics career majors or from the physics and mathematics three-credit elective list for the Physics Career Program.)

Physics-in-Medicine Program

Students in this program may prepare for professional schools in medicine, medical physics, bio-physics, etc., with appropriate selection of electives.

In addition to the physics core courses, majors in physics-in-medicine must complete the following courses, which total 19 credit hours.

- General Biology A and B (BIOS 201, 201L, and 202, 202L)
- Genetics (BIOS 303)
- Organic Chemistry I and II (CHEM 223, 223L, 224, and 224L)
- Thermal Physics (PHYS 352) is a recommended elective for this program. Additional electives recommended to augment this program are BIOS 341: Cell Biology, BIOS 344: Physiology, CHEM 420: Biochemistry and PHYS 421: Medical Physics.

Physics and Computing Program

Students interested in concentrating in computer science while obtaining a major in physics may choose the Physics and Computing Program. In addition to the physics core courses, these students will complete at least 15 credit hours in the Department of Computer Science and Engineering. Students may choose from among four standard course sequences or alternatively may, with the consent of their advisor and the chair of the CSE department, arrange an individualized course sequence. Physics 333, Numerical Methods, is a recommended physics elective for students in this program.

Applied Physics Program

In addition to the physics core courses, the Applied Physics Program requires at least 15 additional credits, to be selected with the advisor’s approval from the following. These may include any of the physics and mathematics elective courses listed above and any courses offered by the Department of Electrical Engineering that deal with electrical properties of materials. Classes include, but are not restricted to, Electrophysics I and II (EE 347 and 357), Electronic Transport Theory (EE 466) and Electronic Properties of Materials (EE 476).

Physics Education Program

In addition to the physics core courses, majors in the Physics Education Program must complete the following courses, which total 33 credit hours.

(Permission courses are offered at Saint Mary’s College):
EDUC 210F: Teaching in a Multicultural Society
EDUC 220: Applied Media and Instructional Technology
EDUC 340: Curriculum and General Methods for Secondary School Teaching
EDUC 350: Educational Psychology: Human Growth and Development of the Adolescent
EDUC 356: Educational Psychology: Exceptional Leaders
EDUC 404: Reading in the Content Area
EDUC 449: Teaching Science in the Secondary School...
<table>
<thead>
<tr>
<th></th>
<th>Career Program</th>
<th>Applied Physics</th>
<th>Physics and Computing</th>
<th>Physics in Medicine</th>
<th>Physics Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>18-21</td>
<td>18-21</td>
<td>18-21</td>
<td>18-21</td>
<td>18-21</td>
</tr>
<tr>
<td>Physics</td>
<td>45-48</td>
<td>30-45</td>
<td>30-33</td>
<td>30-33</td>
<td>30-33</td>
</tr>
<tr>
<td>Chemistry</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Biology</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>11</td>
<td>4**</td>
</tr>
<tr>
<td>Language</td>
<td>Intermediate Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FYC 110</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Philosophy+</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Theology+</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>History+</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences+</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Literature/Fine Arts+</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Education</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Computing Science</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>—</td>
<td>—</td>
<td>3-15</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>17+**</td>
<td>17+**</td>
<td>17+**</td>
<td>13+**</td>
<td>0+</td>
</tr>
<tr>
<td>Total Credits</td>
<td>124</td>
<td>124</td>
<td>124</td>
<td>124</td>
<td>129</td>
</tr>
</tbody>
</table>

* Students must take a minimum of 60 credit hours in science.
** Or any science other than mathematics or physics.
+ One of these courses must be a University Seminar 180.
+ Assumes Intermediate-Level Competency in Language was achieved by taking three three-credit courses.

EDUC 475: Student Teaching in the Secondary School (spring of senior year)

Furthermore, majors in the physics education program must complete a minimum of four additional credits selected, with the advisor’s approval, from courses offered in the College of Science, outside the departments of physics and mathematics or in geological sciences.

Physics As a Second Major

The requirement for physics as a second major, for students in the colleges of engineering, arts and letters or business, consists of the physics core courses listed above, except General Chemistry. To list physics as a second major on the transcript, the student must satisfy all of the requirements for a major in some other department and college of the University.

Sample Curriculum (Career Program):

First Year

<table>
<thead>
<tr>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>FYC 110</td>
</tr>
<tr>
<td>MATH 125</td>
</tr>
<tr>
<td>PHYS 151, 151L</td>
</tr>
<tr>
<td>History or Social Science†</td>
</tr>
<tr>
<td>CHEM 117</td>
</tr>
<tr>
<td>Physical Education or ROTC</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Philosophy or Theology†</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 126</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 152, 152L</td>
<td>4</td>
</tr>
<tr>
<td>History or Social Science†</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 118</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education or ROTC</td>
<td>0</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 253, 253L</td>
</tr>
<tr>
<td>MATH 225</td>
</tr>
<tr>
<td>PHYS 250</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Philosophy or Theology†</td>
</tr>
</tbody>
</table>

Second Semester

PHYS 260	3
MATH 228	3.5
Language	3
Philosophy or Theology†	3

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 352</td>
</tr>
<tr>
<td>PHYS 356</td>
</tr>
<tr>
<td>MATH 361</td>
</tr>
<tr>
<td>MATH 325</td>
</tr>
<tr>
<td>Language</td>
</tr>
</tbody>
</table>

Second Semester

PHYS 351	3
PHYS 333	3
PHYS 357	4
MATH 425	3
Literature or Fine Arts	3

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 435</td>
</tr>
<tr>
<td>PHYS 442</td>
</tr>
<tr>
<td>PHYS 447</td>
</tr>
<tr>
<td>PHYS 453</td>
</tr>
<tr>
<td>Elective</td>
</tr>
<tr>
<td>Philosophy or Theology†</td>
</tr>
</tbody>
</table>

Second Semester

PHYS 443	3
PHYS 451	3
PHYS 454	3
Electives	6

† The student should take three general requirement courses during the first year, including one course that is designated a University Seminar 180.

Physics Course Descriptions

The following course descriptions give the number and title of each course. Lecture hours per week, laboratory and/or tutorial hours per week and credits each semester are in parentheses.

103-102. Concepts of Physics I and II

(3-0-3) 3-6-3

This course is intended for students who will not be majoring in science or in engineering. A study of some of the major concepts and laws of classical and modern physics, in some historical context, provides the student with a foundation for understanding, at a conceptual level, the natural phenomena and technological devices encountered in everyday experience. PHYS 101 will include a study of motion and Newton’s laws, momentum and energy, the structure of matter, thermodynamics and relativity. PHYS 102 will cover wave motion, electromagnetism, light, and the quantum nature of the atomic and subatomic world. PHYS 101 is not a prerequisite for PHYS 102. This course fulfills the University science requirement.
104. Concepts of Energy and the Environment
(3-0-3)
Prerequisite: A working knowledge of high school algebra.
A course developing the basic ideas of energy and power and their applications. The fossil fuels are considered together with their limitations, particularly as related to global warming, pollution and their nonrenewable character. The advantages and disadvantages of nuclear power are studied and compared with alternative energy sources such as solar energy, wind, and geothermal and hydroelectric power. Various aspects of energy storage and energy conservation are also considered. This course is designed for the non-specialist. It is open to first-year students only. It satisfies one semester of the University science requirement, but PHYS 104 and PHYS 204 may not both be counted toward that requirement.

110. Descriptive Astronomy
(3-0-3)
Prerequisites: Three units of high school algebra and geometry. One unit of high school science. A description of the motions and structure of the earth, moon and planets. Exposition of the modern theories of solar and stellar structure, nebulae and galaxies. Basics of stellar evolution, black holes, quasars and other recent developments. An introduction to cosmology. This course includes elementary observational projects. The course fulfills one semester of the University science requirement.

115-116. Principles of Physics I and II
(3-0-3) (3-0-3)
Prerequisites: A knowledge of algebra and trigonometry and the ability to use them in solving problems. High school chemistry is recommended. PHYS 115 is a prerequisite to PHYS 116. A course intended for students who desire a grounding in all the major principles of physics but who plan to major in some other area other than science or engineering. The ability to apply these principles to the solution of problems is a major goal of the course. The following topics are normally included: kinematics and dynamics of a particle, work, energy, momentum, harmonic motion, gravitation and circular orbits. Wave motion, interference, standing waves, the Doppler effect. Temperature, heat, first law of thermodynamics, kinetic theory of gases. Electric charge, Coulomb’s law, electric field and potential, current, resistance, DC circuits. Magnetic force, electromagnetic induction. The nature of light, the spectrum. Photons, photoelectric effect, Compton scattering, deBroglie waves, energy levels, X-rays. Nuclear and radioactivity. Special relativity. Additional material will be at the discretion of the instructor. The division between PHYS 115 and 116 will depend on the order of presentation. This course fulfills the University science requirement.

131-132. General Physics I-M and II-M
(4-1-4) (4-1-4)
Prerequisites for PHYS 131: High school chemistry and physics and three-and-one-half units of mathematics. Corequisite for PHYS 131: MATH 125 or equivalent.
Prerequisites for PHYS 132: PHYS 131 or 151, and MATH 125.
Corequisite for PHYS 132: MATH 126 or equivalent.
A two-semester sequence in general physics. Topics include the kinematics and mechanics of a particle; work, energy and momentum, and associated conservation laws; rotation, torque and angular momentum; oscillations and wave motions; electrostatics, electric current and circuits; magnetism, electromagnetic induction and waves; geometrical optics. A course designed for students of science and engineering. Laboratory meetings in alternating weeks only. Weekly tutorial sessions.

151-152. General Physics I-M and II-M
(4-2-4)(4-2-4)
Prerequisites for PHYS 151: High school chemistry and physics, and three-and-one-half units of mathematics. Corequisite for PHYS 151: MATH 125 or equivalent.
Prerequisites for PHYS 152: PHYS 151 or 151, and MATH 125.
Corequisite for PHYS 152: MATH 126 or equivalent.
The first two semesters of a three-semester sequence in general physics. Topics include the kinematics and mechanics of a particle; work, energy and momentum, and associated conservation laws; rotation, torque and angular momentum; oscillations and wave motions; electrostatics, electric current and circuits; magnetism, electromagnetic induction and waves; geometrical optics. A course designed for students intending to enter the Department of Physics. Laboratory meetings each week.

171. Elementary Cosmology
(3-0-3)
Prerequisite: High school physics and algebra. An elective course for students planning to major in the colleges of arts and letters or business. It is designed to acquaint the non-mathematically-inclined student with the most important discoveries in physics of the last few decades and how they have altered our perceptions of the origin and structure of the universe. This course examines such questions as: “Where did the universe come from?” “Why do scientists feel sure that it was born in a cosmic fireball called the Big Bang?” and “Where did the Big Bang itself come from?” This is a reading-intensive course based on popularizations of science written for the curious and intelligent layperson. The emphasis will be on class discussion of the readings. One book report and a term paper are required in addition to examinations. This course satisfies one semester of the University science requirement. If taken by science students, this course counts as general elective credit.

174. Physics of Music and Sound Reproduction
(3-0-3)
Prerequisites: High school algebra, geometry and trigonometry.
The physics of sound reproduction, including the acoustical and electronic production and reproduction of sound. The course will include basic Newtonian mechanics, oscillating systems, wave motion, sound, Fourier synthesis, musical acoustics of various instruments, introduction to electricity and magnetism, and the physics of microphones, loudspeakers, phonographs, tape recording, digital compact discs and electronic synthesizers. This course satisfies one semester of the University science requirement. If taken by science or engineering students, this course counts as general elective credit.

176. Technological Risk
(3-0-3)
Prerequisites: None.
A survey of risk issues in our technological society. Topics include the perception, measurement, assessment, management and politics of technological risk, together with a discussion of possible ethical bases for risk/benefit analysis. Case studies will include highway safety, air transportation, chemical carcinogenesis, fossil fuels (including global warming and ozone depletion issues), and ionizing and non-ionizing radiation (from high-level radioactive waste to electric blankets). This course is intended for students planning to major in the colleges of arts and letters or business and satisfies one semester of the University science requirement.

178. Physical Methods in Art and Archaeology
(3-0-3) Wiescher
Prerequisite: High school physics and algebra. A course that gives an overview of the various physics-based analysis and dating techniques used in art and archaeology. The course will cover topics such as X-ray fluorescence and X-ray absorption, proton-induced X-ray emission, neutron-induced activation analysis, radiocarbon dating, accelerator mass spectroscopy, luminescence dating, and methods of arteometry. Multiple examples of the use of the techniques in art and archaeology will be given, e.g., under X-ray techniques and accelerator mass spectrometry, the analysis of ancient coins and violin varnish and the Iceman and the Tarim Shroud are used respectively as examples. Physics principles of the methods and techniques will be taught in a descriptive manner. This course is intended for students in arts and letters or business and satisfies one semester of the University science requirement. If taken by science or engineering students, this course counts as general elective credit.
Section 8 (Sci) 9/6/02, 12:14 PM

212. Scientific Programming
(3-0-3)
Prerequisite: PHYS 142 or PHYS 152, or equivalent.
The principal goal of this course is to develop a good level of competence and experience in the use of computers as a tool for scientific studies. The course is intended primarily for physics majors.
Topics covered will include (1) the FORTRAN language, (2) graphical presentation of results including user-written programs and graphics packages, (3) the use of scientific libraries of subroutines, (4) the use of other scientific programs such as algebraic manipulators, (5) the use of spreadsheets for problem solving, etc. Coursework will include the use of high-end UNIX workstations.

221-222. Physics I and II
(3-2-4) (3-2-4)
Prerequisites for PHYS 221: MATH 119 and 120, or MATH 125 and 126.
Prerequisites for PHYS 222: PHYS 221 or equivalent.
The basic principles of mechanics, fluid mechanics, thermal physics, wave motion, sound, electricity, magnetism, optics and modern physics. Primarily for students in the life sciences.

231. General Physics III
(3-1-3.5)
Prerequisites:
PHYS 132 or 142, MATH 126.
Corequisite: MATH 225 or equivalent.
A third semester in general physics. Topics include (1) interference and diffraction; (2) quanta and the wave-particle duality; (3) introduction to quantum mechanics; (4) atomic, nuclear and particle physics; (5) physics of the solid state; (6) astrophysics and cosmology. A course designed for students of science and engineering. Laboratory meetings in alternating weeks only.

250. Mechanics I
(3-0-3)
Prerequisite: PHYS 142 or PHYS 152, or equivalent.
Corequisite: MATH 225 or equivalent.
Newtonian mechanics of a particle in one, two and three dimensions; acceleration in polar and spherical coordinates; conservative and nonconservative forces; conservation laws; the central force problem; small oscillations; two-body collisions; kinematics and dynamics of special relativity.

251. Mechanics II
(Formerly numbered 351)
(3-0-3)
Prerequisite: PHYS 250.
Conservation laws for systems of particles; coupled oscillations; rotating coordinate systems; one-dimensional wave motion; gravitation; kinematics and dynamics of rigid body motion; Lagrange's equations.

253. General Physics III-M
(4-2-4)
Prerequisite: PHYS 152 or equivalent and MATH 126.
Corequisite: MATH 225 or equivalent.
The third semester of a three-semester course in general physics. Topics include classical thermodynamics, fluids and acoustics; interference and diffraction; special and general relativity; introduction to quantum physics. The course is intended primarily for sophomore physics majors but is open to other qualified students. Laboratory meetings each week.

260. Modern Physics I
(Formerly numbered 431)
(4-0-4)
Prerequisite: PHYS 250.
Corequisite or corequisite: MATH 228.

309. Philosophical Issues in Physics
(3-0-3)
Prerequisite: One year of general physics at the college level.
This course is intended for non-science students who desire to begin an examination of the origins of the modern laws of physics and for science students who wish to know the actual route to the discovery and the broader implications of the formal theories with which they are already familiar. The historical background and philosophical questions associated with major laws of physics will be discussed, in large measure by examining directly relevant excerpts from the writings of some of the creators of seminal concepts and theories in physics. The latter part of the course will concentrate on historical and philosophical issues related to relativity and especially to quantum theory and its interpretation. This course is accepted as a science elective in the College of Science.

310. Topics in Astronomy and Astrophysics
(3-0-3)
Prerequisite: PHYS 222 or 229 or 241 or 253.
This course is designed to provide undergraduate science and engineering majors in any department a fundamental background in current topics of astronomy and astrophysics. Astronomy is a science that uses physics to interpret astronomical events. This field is rapidly developing. Each year brings an increased number of significant and exciting discoveries based on data from a variety of spacecraft, rockets, balloons and a whole new technology of ground-based observatories and detectors. The course will provide quantitative insights into astrophysical topics of interest such as the structure and evolution of stars, the dynamics of cosmic gas, nucleosynthesis, black holes, galaxy formation, cosmology, the missing mass problem, the size and mass of cosmic objects, the large-scale behavior of the universe, quasars, evolution of the solar system and the search for planetary systems around other stars. Each topic will be developed and evaluated along with the most recent work in these areas. This is an approved science elective.
331. Lasers and Modern Optics
(2-3-3)
Prerequisite: PHYS 229 or 241 or 253.

333. Numerical Methods
(3-0-3)
Prerequisite: PHYS 212 or a knowledge of programming, MATH 228 or equivalent, and a calculus-based course in general physics.
Elements of numerical analysis: functional equations, polynomial approximations, numerical differentiation, numerical integration. Numerical solution of differential equations: first-order equations, initial value determination, applications to mechanics and electricity, eigenvalue problems for second-order linear differential equations. Elementary methods for solving partial differential equations: relaxation methods, variational methods. This course is intended primarily for physics majors but is open to students from other departments who have adequate backgrounds in mathematics and physics. Credit is not given for both PHYS 333 and MATH 318.

345. Relativity: Special and General
(3-0-3)
Prerequisite: PHYS 250.
An introduction to relativity, both special and general. Special relativity: Lorentz transformations of events, geometry of space-time, relativistic kinetics (energy-momentum), Lorentz transformations of electromagnetic fields. General relativity: gravity and light, principle of general covariance, Einstein’s field equations, Schwarzschild solution, precession of perihelions of planets, deflection of light, black holes.

352. Thermal Physics
(Formerly numbered 452)
(3-0-3)
Prerequisite or corequisite: PHYS 361.
Physical thermodynamics, kinetic theory and an introduction to statistical mechanics.

356. Electricity and Magnetism
(3-0-3)
Prerequisite: PHYS 250.
Prerequisite or corequisite: MATH 325.

357. Electromagnetic Waves
(Formerly numbered 457)
(3-0-3)
Prerequisite: PHYS 356.
Study of electromagnetic waves. Physical optics. Radiation from accelerating charges. Some topics from the special theory of relativity.

361. Modern Physics II
(Formerly numbered 432)
(4-0-4)
Prerequisite: PHYS 260.
Prerequisite or corequisite: MATH 325.
A continuation of Modern Physics I. Topics in quantum physics. Molecular bonding and spin valence. Molecular spectra. Bonding, energy levels and bond structure in solids. Ionic crystals, metals and semiconductors. Thermal, electric, magnetic, and optical properties of solids. Quantum numbers of particles, basic forces, the particle zoo. Stable nuclei, nuclear structure and models, nuclear decay and reactions, energy levels, fission, fusion. Particle scattering. Production, detection and properties of elementary particles.

421. Medical Physics
(3-0-3)
Prerequisite: A one-year course in college physics. Topics involving the applications of physics in medicine and biology are selected from the following: external and internal forces on the body; heat and temperature equilibrium; physics of hearing; physics of vision; nerve conduction; muscle contraction; electric potentials of the brain; physics of cardiovascular and pulmonary systems; ionizing radiation and their effects; nuclear medicine; radiotherapy; physics of some biological instruments. An elective course for preprofessional students, but open to other students.

371-472. Topics in Contemporary Physics I and II
(3-0-3) (3-0-3)
Prerequisite: PHYS 251. A study of the physical problems associated with stellar motions; energy generation and radiation; astronomical distances; celestial mechanics; galactic dynamics; cosmic rays; interstellar matter; thermodynamics; and equations of state of various stellar models. Observational techniques and methods of computation will be discussed. An elective course for senior physics majors and other qualified students.

442-443. Modern Physics Laboratory I and II
(1-4-3)
Prerequisite: PHYS 361.
A laboratory course stressing experiments in atomic, nuclear and solid-state physics. The course is designed to introduce the student to experiments and methods closely related to modern-day research. Students will be introduced to the fundamentals of semiconductor devices and the construction and use of such devices.

447. Senior Seminar
(1-0-1)
A discussion of current topics in physics by students and staff members.

451. Astrophysics
(3-0-3)
Prerequisites: PHYS 356, PHYS 361.
A study of the physical problems associated with stellar motions; energy generation and radiation; astronomical distances; celestial mechanics; galactic dynamics; cosmic rays; interstellar matter; thermodynamics; and equations of state of various stellar models. Observational techniques and methods of computation will be discussed. An elective course for senior physics majors and other qualified students.

453-454. Introduction to Quantum Mechanics I and II
(3-0-3) (3-0-3)
Prerequisites: PHYS 251, PHYS 361.
The experimental basis for the wave picture of matter and the fundamental ideas of quantum mechanics. An elective course for senior physics majors.

471-472. Topics in Contemporary Physics I and II
(3-0-3) (3-0-3)
A treatment in depth of selected topics and problems of current interest in physics.

497. Directed Readings
(0-V-V)
Prerequisite: Permission of department chair and individual instructor.
Study of topics not covered or only briefly covered in other courses. Readings, problems and reports. May include laboratory work not encompassed by PHYS 499.

498. Undergraduate Research
(0-V-V)
Prerequisite: Requires permission of the physics department chair and the student’s department chair. Research in collaboration with members of the faculty. Three to 15 hours each week, arranged individually for each student. One to five credits.

Certain graduate courses in physics are open to qualified advanced undergraduates, subject to the approval of the chair of the department. These courses are listed in the Graduate School Bulletin of Information.
Preprofessional Studies

Chair:
Rev. Joseph L. Walter, C.S.C., Ph.D.
Program of Studies.
Assistant Professional Specialist:
Rudolph M. Navari, M.D., Ph.D.
Professional Specialist:
Rev. James K. Foster, C.S.C., M.D.

Program of Studies. The Department of Preprofessional Studies offers several programs in the two major sequences, namely the program sequence in premedical science studies and the programs in the Collegiate Sequence.

All of the programs are quite flexible and allow the student to design a curriculum, in consultation with the chair or the associate dean in the College of Science, in order to enable the student to enter the profession best suited for his or her talents. The program in premedical science studies enables the student to obtain an excellent preparation to enter any of the professions of medicine, dentistry or the other ancillary fields of the healing professions. The interdisciplinary programs of the collegiate sequence have been designed to offer significant flexibility to prepare students for the professions of science-education, science-business and science-computing. All of the programs allow for a strong science background while also allowing a diverse background in the arts and humanities for individuals with a desire to obtain a broad educational background.

The major goal of this department is to provide an education in the best of liberal traditions of scientific thought and analysis, which the student can utilize for career opportunities in a variety of fields.

The program sequence in premedical science studies is a special program within the Department of Preprofessional Studies for students preparing to enter the professions of medicine, dentistry, osteopathy, veterinary medicine, podiatry, as well as information on several ancillary programs in the field of medicine. The student planning to enter the profession of dentistry will have a program of courses that will satisfy the requirements for admission to any dental school. The aptitude test administered by the American Dental Association is given at Notre Dame twice each year.

Bachelor of Science with a Major In Preprofessional Studies —
Premedical Science Sequence
(124 semester hour credits: 64 science hour credits, minimum)

First Year

First Semester
FYC 110 English Composition
3
MATH 119
4
CHEM 117
4
History or Social Science* 3
Philosophy or Theology* 3
Physical Education or ROTC
—
—
—

Second Semester
Philosophy or Elective* 3
MATH 120
4
CHEM 118
4
History or Social Science* 3
University Seminar 180J* 3
Physical Education or ROTC
—
—
—

Sophomore Year

First Semester
CHEM 223: Elementary
Organic Chemistry I
3
CHEM 223L: Elementary
Organic Chemistry Lab I
1
BIOS 201: General Biology A
3
BIOS 201L: General Biology A Lab
1
Elective
3
Language
3

Junior Year

First Semester
Science Elective** (Note 3) 4
Physics (PHYS 221, 221L)
4
Language or Elective
3
Philosophy or Elective
3
Science Elective
3
17

Second Semester
Science Elective** (Note 3) 3
Physics (PHYS 222, 222L)
4
Electives
9
16

Senior Year

First Semester
Science Elective** (Note 3) 3
Science Elective** (Note 3) 4
Philosophy or Theology or 300-level English Literature (Note 6) 3
Electives
6
16

Second Semester
Science Elective** (Note 3) 4
Theology (Medical Ethics)
3
Elective
3
Science Elective** (Note 3) 3
13

Notes:
1. All course instruction in the curricula of the Department of Preprofessional Studies is provided by other departments in the College of Science and other colleges of the University.
2. The elective courses in the senior year may include a thesis based on laboratory work performed in a registered course in a given department with the approval of the head of that department, who will specify the number of credits assigned to the thesis.
3. The choice by the student of elective courses in science for the program in preprofessional studies will be based upon the requirements of the professional schools and upon the lists of courses suggested or recommended by those schools in which the student is interested; the choice will be based also upon the advice and counseling of the chair of the department.
4. From the Medical and Dental School Requirements Books, the following courses, in order of frequency of appearance, would be the most highly recommended in addition to the five basic science courses, giving the student applicant the best science background to be a most attractive candidate to any school to which he or she wishes to apply: genetics, analytical chemistry, embroyology, biochemistry, physical chemistry, physiology, cell biology and microbiology.
Additional courses in higher mathematics, statistics and computer science are recommended for qualified students. Students not only must fulfill their requirements but, in the case of the natural sciences (mathematics, chemistry, biology and physics), also are strongly recommended to follow the sequence of courses as listed. This sequence is designed in the light of health-related professional school requirements so that one course builds on knowledge gained from a prior course, even one from a different department; it is also structured to maintain a rigorous course load of at least two such courses per semester, with some adjustment possible in the senior year. Summer sessions, transfer credits and other modification in the regular curriculum should not be allowed to disturb this sequence of courses in the natural sciences.

4. For the selection of non-science electives for the programs, students should know that medicine and the other healing professions need individuals with a diversity of educational backgrounds and a wide variety of talents and interests. All of these schools recognize the desirability of a broad education — a good foundation in the natural sciences (mathematics, chemistry, biology and physics), highly developed communication skills and a solid background in the social sciences and humanities. To appreciate the many dimensions of human experience requires informed reflection upon the literature, the philosophy and the arts . . . of all people in our society.

5. Recommendation 1 of the recent Report of the Association of American Medical Colleges titled “Physicians for the 21st Century” encourages a broadening of preparation. The department continues to encourage students to follow that recommendation by using the requirements of history and social science. English and the 27 general elective credits “to be an informed participant in contemporary society by understanding its politics, history and economics. To appreciate the many dimensions of human experience requires informed reflection upon the literature, the philosophy and the arts . . . of all people in our society.”

6. To fulfill the medical school requirements of two semesters of English, students are required to take FYC 110 (Composition) and one literature course taught in English. The literature course can be either a University Seminar 180J or a 300-level literature course offered by the English Department. Thus, if a student’s University Seminar requirement is met by one of the 180J literature options, then the student will not be required to take 300-level literature. Note, for this major only, a course in fine arts is not acceptable for the University literature/fine arts requirement. (A fine arts course will count as a general elective.)

7. In the curriculum for the program, there are listed the several courses required for the degree, including one semester each of history and social science, a course in literature, two courses in philosophy and two courses in theology. Students should remember that none of the required courses can be taken as a pass/fail option.

8. Students who have completed only six hours of mathematics in the first year of studies may transfer into the program but they will be required to complete a mathematics sequence equivalent to MATH 119, 120 or MATH 125, 126. Students having taken MATH 105, 106 (or 108 or 110) may do this by taking MATH 120, while those who have taken only one semester of lower-level calculus should take both MATH 119, 120. Those students should see also the discussion on degree credit found on page 302.

9. PHYS 131-132 or PHYS 151-152 may be substituted for PHYS 221-222.

10. Undergraduate Research (BIOS 498), Teaching Practicum (BIOS 495), and Directed Readings (BIOS 497) count toward the 64-hour preprofessional studies major science requirement; however, a maximum of two credits a semester and a combined total of six credit hours may be counted in fulfilling the 64-credit-hour science requirement as well as the maximum credit hours counted toward graduation.

11. Alpha Epsilon Delta, the international premedical honorary society, is represented at the University of Notre Dame through the Indiana Gamma Chapter; membership in this society is open to premedical students of the University who maintain a superior academic record and who exhibit exemplary personal attributes. All students are welcome to join the Premed Club.

12. All students who have had previous exposure to a language will be required to take a placement examination in that language for placement in the proper course if the student wishes to continue in that language for the college requirement. If a student wishes to take a new language, of course, he or she must start from the beginning.

13. Interested parties may obtain additional information including various statistics from the department Web page. See www.science.nd.edu/underPreprofessionalStudies.

Summary of Requirements for the Degree of Bachelor of Science in Preprofessional Studies

<table>
<thead>
<tr>
<th>Category</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td>8</td>
</tr>
<tr>
<td>Chemistry</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics</td>
<td>8</td>
</tr>
<tr>
<td>Physics</td>
<td>8</td>
</tr>
<tr>
<td>FYC 110</td>
<td>3</td>
</tr>
<tr>
<td>Language</td>
<td>Intermediate-Level Competency</td>
</tr>
<tr>
<td>Philosophy*</td>
<td>6</td>
</tr>
<tr>
<td>Theology*</td>
<td>6</td>
</tr>
<tr>
<td>History*</td>
<td>3</td>
</tr>
<tr>
<td>Social Science*</td>
<td>3</td>
</tr>
<tr>
<td>Literature (University Seminar 180J or 300-level English; see note 6)</td>
<td>3</td>
</tr>
<tr>
<td>Science Electives</td>
<td>24</td>
</tr>
<tr>
<td>General Electives</td>
<td>**27</td>
</tr>
<tr>
<td>Total Credits</td>
<td>124</td>
</tr>
</tbody>
</table>

* One of these courses must be a University Seminar 180U and 180J is recommended. See note 6.
** Assumes Intermediate-Level Competency in Language was achieved by taking three three-credit courses.

Preprofessional Studies Course Descriptions

The following course descriptions give the number and title of each course. Lecture hours per week, laboratory and/or tutorial hours per week and credits each semester are in parentheses.

101. Medical Science from Birth to Death (3-0-3) Foster

The course will cover the science behind the technological advances used in various medical subspecialties that raise ethical questions from the beginning to the end of life. It will provide students with an overview of the biotechnological advances that are in the news, reshaping the scientific culture of modern medicine, and challenging personal and societal human values. This course fulfills one semester of the University Science requirement. First-year students only. Fall and spring.
102. Introduction to Common Medical Illnesses
(3-0-3) Navari
The course will begin with an introduction to human anatomy in which organ structure and function will be emphasized. This will be followed by the anatomy, biochemistry, physiology and pathology of several common medical illnesses in the North American population. This course fulfills one semester of the University science requirement. First-year students only. Students may not take both this course and BIOS 106. Spring.

300. Introduction to Clinical Ethics
(3-0-3) Foster
Permission required.
The focus of the course will be an examination of the discoveries in science and medicine over the last 30 years that have challenged traditional values and ethical norms. It will include a sketch of the most recent advances in the various fields of medicine, followed by an examination of the ethical questions they raise and how they have affected the physician-patient relationship. Note: This course counts as a general elective. Fall and spring.

311. Introduction to the American Health Care System
(3-0-3) Navari
Permission required.
The course will begin with a short history of the American health care system and will be followed by a discussion of the major components of the system (patients, providers, payers), health insurance coverage, managed care programs, the movement for quality health care, physicians in the changing medical marketplace, health care expenditures, and academic medical centers. This course counts as a general elective. Fall.

COLLEGIATE SEQUENCE PROGRAMS

The three Collegiate Sequence programs, Science-Business, Science-Computing, and Science-Education, were first instituted in 1987. These three programs allow students to obtain a strong science background while simultaneously preparing them for professions in business, computing or education.

Science-Business Collegiate Sequence
The Science-Business Collegiate Sequence in the Department of Preprofessional Studies is an individualized course of study which incorporates courses from the basic areas of business along with the four basic areas of science. This approach enables students to attain a diversified background to enter an MBA program, leading to a position primarily in the scientific or health professions business areas. It is also a complete and sufficient program to enable the B.S. graduate of the sequence to enter the scientific business market immediately upon graduation.

Information on the areas of public health and hospital administration, as well as the business needs of the pharmaceutical, biological and chemical industries are available in the office of the Department of Preprofessional Studies, 239 Nieuwland Science Hall.

The other departments in the College of Science as well as the colleges of arts and letters and business administration provide all course instruction in the curricula of the Science-Business Collegiate Sequence.

Bachelor of Science with a Major in Science-Business
All science-business majors take the following basic sequence of science courses:
- General Biology (BIOS 201-202 and 201L and 202L)
- General Chemistry (CHEM 117-118)
- Geology (SC 231-233)
- Calculus (MATH 119-120 or 125-126)
- Physics (PHYS 221-222)
- Statistics (MATH 214 or BIOS 411)

They also are required to take 16-17 credits of science electives, completing a minimum of 60 credits of science courses.

Also required for the major are the following business and economics courses:
- Introduction to Economics (ECON 115 or 225)
- Accounting and Accountancy I (ACCT 231)
- Accounting and Accountancy II (ACCT 232)
- Business Finance (FIN 231)
- Introduction to Management (MGT 231)
- Introduction to Marketing (MARK 231)

Requirements for the program are summarized in the table.

Notes:
1. Equivalent or higher-level sequences in science may be substituted, e.g., CHEM 113-114 or CHEM 125-126 for CHEM 117-118 or BIOS 155-156 for BIOS 201-202 or MATH 165-166 for MATH 125-126.
2. Students who have completed only six hours of mathematics in their first year may transfer into the program, but they will be required to complete a mathematics sequence equivalent to MATH 119, 120 or MATH 125,126. Students having taken MATH 105, 106 (or 108 or 110) may do this by taking MATH 120, while those who have taken only one semester of lower-level calculus should take both MATH 119, 120. (See also the discussion on science degree credit, found on page 302.)
3. PHYS 131-132 or PHYS 151-152 may be substituted for PHYS 221-222.
4. The choice by the student of the elective courses in science for the program will be discussed with the student and will be based on the future industrial or health professions business interests of the student. Any major-level College of Science courses (i.e., those taken to meet science-major requirements and not those designated as “Recommended University electives”) and that are not being used to fulfill other specific graduation requirements can be used to satisfy the “Science Elective” requirement. Major-level geology courses crosslisted as science courses may be taken as science electives. Students are restricted to no more than two credits of courses such as Undergraduate Research or Directed Readings in the science elective total. Teaching Practicum (BIOS 495) may not be used as a science elective.
5. The economics requirement for this major is fulfilled by taking Introduction to Economics either in the first year (ECON 115) or in the sophomore year (ECON 225). Students who have taken ECON 123/223 (Principles of Economics I) will be required to take ECON 224 (Principles of Economics II). Note: The course ECON 180 (Social Science University Seminar) will not fulfill the economics requirement for this major.
6. For this major, the University social science requirement will be fulfilled by the required economics course. Additional social science courses are recommended and will count toward the student’s general electives.

Suggested Curriculum for the Degree of Bachelor of Science in the Science-Business Collegiate Sequence (124 semester hour credits: 60 science hour credits, minimum)

First Year

<table>
<thead>
<tr>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 117: General Chemistry</td>
</tr>
<tr>
<td>MATH 119 or 125: Calculus (Note 4)</td>
</tr>
<tr>
<td>PHYC 110</td>
</tr>
<tr>
<td>Theology*</td>
</tr>
<tr>
<td>History*</td>
</tr>
<tr>
<td>Physical Education/ROTC</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 118: General Chemistry</td>
</tr>
<tr>
<td>MATH 120 or 126: Calculus</td>
</tr>
<tr>
<td>Fine Arts or Literature*</td>
</tr>
<tr>
<td>Philosophy*</td>
</tr>
<tr>
<td>ECON 115*</td>
</tr>
<tr>
<td>Physical Education/ROTC</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Sophomore Year

First Semester
- BIOS 201: General Biology A 3
- BIOS 201L: General Biology A Lab 1
- SC 231: Physical Geology 4
- Language 3
- Elective 3
- **Total:** 14

Second Semester
- BIOS 202: General Biology B 3
- BIOS 202L: General Biology B Lab 1
- SC 232: Historical Geology 4
- Language 3
- Philosophy 3
- **Total:** 14

Junior Year

First Semester
- Science Elective 3
- PHYS 221: General Physics I 4
- ACCT 231 3
- Theology 3
- Elective (or Language) 3
- **Total:** 16

Second Semester
- BIOS 411: Biostatistics or MATH 214: Statistics 4
- PHYS 222: General Physics II 4
- ACCT 232 3
- MGT 231 3
- **Total:** 17 (16)

Senior Year

First Semester
- Science Electives 7
- Elective 5
- MARK 231 3
- **Total:** 15

Second Semester
- Science Electives 7
- Electives 5
- FIN 231 3
- **Total:** 15

* One of these courses must be a University Seminar 180.

Science-Computing Collegiate Sequence

The Science-Computing Collegiate Sequence in the Department of Preprofessional Studies is an individualized course of study which incorporates courses from the four basic areas of science along with a sequence of computing courses. The program will give the student working knowledge of various computer languages and experience using current computer technology. By choosing science electives appropriately, the student has the option of focusing in an area in science of particular interest. Graduates of this program earn a B.S. degree and are able to enter the scientific computing job market immediately upon graduation.

The other departments in the College of Science as well as the colleges of arts and letters and engineering provide all course instruction in the curricula of the Science-Computing Collegiate Sequence.

Bachelor of Science with a Major in Science-Computing

All science-computing majors take the following basic sequence of science courses:
- General Biology (BIOS 201-202 and 201L and 202L)
- General Chemistry (CHEM 117-118)
- Geology (SC 231-232)
- Calculus (MATH 119-120 or 125-126)
- Physics (PHYS 221-222)
- Statistics (MATH 214 or BIOS 411)

They also are required to take 16-17 credits of science electives, completing a minimum of 60 credits of science courses.

Also required for the major is one of the following approved sequences in computing:

Software design option:
- Advanced Programming (CSE 232)
- Discrete Mathematics (CSE 210)
- Data Structures (CSE 331)
- Functional Programming (CSE 233)
- Database Concepts (CSE 346)

Theory option:
- Advanced Programming (CSE 232)
- Discrete Mathematics (CSE 210)
- Data Structures (CSE 331)
- Automata (CSE 411)
- Algorithms (CSE 413)
Theory and compilers option:
- Advanced Programming (CSE 232)
- Discrete Mathematics (CSE 210)
- Data Structures (CSE 331)
- Automata (CSE 411)
- Compilers (CSE 445)

Computer architecture option:
- Advanced Programming (CSE 232)
- Logic Design and Sequential Circuits (CSE 221)
- Computer Architecture I (CSE 321)
- Computer Architecture II (CSE 322)

The advisor must approve any deviations from one of these sequences.

Requirements for the program are summarized in the table.

Notes:
1. Equivalent or higher-level sequences in science may be substituted, e.g., CHEM 113-114 or CHEM 125-126 for CHEM 117-118 or BIOS 155-156 for BIOS 201-202 or MATH 165-166 for MATH 125-126.
2. Students who have completed only six hours of mathematics in their first year may transfer into the program, but they will be required to complete a mathematics sequence equivalent to MATH 119, 120 or MATH 125, 126. Students having taken MATH 105, 106 (or 108 or 110) may do this by taking MATH 120, while those who have taken only one semester of lower-level calculus should take both MATH 119, 120. (See also the discussion on science degree credit found on page 302.)
3. PHYS 131-132 or PHYS 151-152 may be substituted for PHYS 221-222.
4. The choice by the student of the elective courses in science for the science-computing program will be based on the student’s scientific interest as developed during his or her studies of the four basic areas of science. Any major-level College of Science courses (i.e., those taken to meet science-major requirements and not those designated as “Recommended University electives”) and that are not being used to fulfill other specific graduation requirements can be used to satisfy the “Science Elective” requirement. Major-level geology courses crosslisted as science courses may be taken as science electives. Students are restricted to no more than two credits of courses such as Undergraduate Research or Directed Readings in the science elective total. Teaching Practicum (BIOS 495) may not be used as a science elective.
5. Students following this option will need to take CE 232 in the fall of the sophomore year.

Suggested Curriculum for the Degree of Bachelor of Science in the Science-Computing Collegiate Sequence (124 semester hour credits: 60 science hour credits, minimum)

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 117: General Chemistry</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 125: Calculus (Note 5)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FYC 110</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theology*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education/ROTC</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 118: General Chemistry</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 126: Calculus</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Arts/Literature*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philosophy*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Science*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education/ROTC</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 201: General Biology A</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 201L: General Biology A Lab</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC 231: Physical Geology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 202: General Biology B</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 202L: General Biology B Lab</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC 232: Historical Geology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 232: Advanced Programming</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 221: General Physics I</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective (or Language)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 411: Biostatistics or MATH 214: Statistics</td>
<td>4 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 222: General Physics II</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 210: Discrete Mathematics</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 233: Functional Programming</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philosophy</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17 (16)</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Electives</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 331: Data Structures</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Electives</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 346: Database Concepts</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

*One of these must be a University Seminar 180.

Science-Education Collegiate Sequence

The Science-Education Collegiate Sequence in the Department of Preprofessional Studies is an individualized course of study which incorporates many courses from the four basic areas of science along with education courses that most states require to give the student the background necessary to receive a certificate to teach in a secondary education system. Information concerning the requirements for secondary education in the various states, as well as the general course requirements for a certificate necessary to teach science in a secondary education program, is available in the College of Science office, 229 Nieuwland Science Hall.

The other departments in the College of Science and the other colleges of the University, as well as the Education Department at Saint Mary’s College, provide all course instruction in the curricula of the Science-Education Collegiate Sequence.

Bachelor of Science with a Major in Science-Education

All Science-Education majors take the following basic sequence of science courses:

- General Biology (BIOS 201-202 and 201L and 202L)\(^1\)
- General Chemistry (CHEM 117-118)\(^1\)
- Geology (SC 231-232)
- Calculus (MATH 119-120 or 125-126)\(^2\)
- Physics (PHYS 221-222)\(^3\)

They also are required to take 20 credits of science electives,\(^4,5\) completing a minimum of 60 credits of science courses.

Also required for the major are the following education courses taught by Saint Mary’s College:

- EDUC 201: Teaching in a Multicultural Society
- EDUC 220: Applied Media and Instructional Technology
- EDUC 340: Curriculum and General Methods for Secondary School Teaching
- EDUC 350: Educational Psychology; Human Growth and Development of the Adolescent
- EDUC 356: Educational Psychology: Educating Exceptional Learners
- EDUC 404: Reading in the Content Area
- EDUC 449: Teaching Science in the Secondary School
- EDUC 475: Student Teaching in the Secondary School (spring of senior year)
The education courses are those required in the State of Indiana but are also those that are required most often by the educational accrediting agencies of most states. The practical teaching experience which is required will also be arranged through the Education Department at Saint Mary’s College.

Requirements for the program are summarized in the table.

Notes:
1. Equivalent or higher-level sequences in science may be substituted, e.g., CHEM 113-114 or CHEM 125-126 for CHEM 117-118 or BIOS 155-156 for BIOS 201-202 or MATH 165-166 for MATH 125-126.
2. Students who have completed only six hours of mathematics in their first year may transfer into the program, but they will be required to complete a mathematics sequence equivalent to MATH 119, 120 or MATH 125, 126. Students having taken MATH 105, 106 (or 108 or 110) may do this by taking MATH 120, while those who have taken only one semester of lower-level calculus should take both MATH 119, 120. (See also the discussion on science degree credit found on page 302.)
3. PHYS 131-132 or PHYS 151-152 may be substituted for PHYS 221-222.
4. The choice by the student of the elective courses in science for the science-education program will be based upon the requirements and list of courses suggested by the various state educational systems. Since the timing of the coursework is particularly constrained for this major, the student should work closely with his or her advisor, an associate dean in the College of Science and an assigned advisor in the Education Department at Saint Mary’s College.
5. Any major-level College of Science courses (i.e., those taken to meet science-major requirements and not those designated as “Recommended University electives”) that are not being used to fulfill other specific graduation requirements can be used to satisfy the “Science Elective” requirement. Major-level geology courses crosslisted as science courses may be taken as science electives. Students are restricted to no more than two credits of courses such as Undergraduate Research or Directed Readings in the science elective total.

Suggested Curriculum for the Degree of Bachelor of Science in the Science-Education Collegiate Sequence (124 semester hour credits: 60 science hour credits, minimum)

First Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 117: General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>MATH 119 or 125: Calculus (Note 6)</td>
<td>4</td>
</tr>
<tr>
<td>FYC 110</td>
<td>3</td>
</tr>
<tr>
<td>Theology*</td>
<td>3</td>
</tr>
<tr>
<td>History*</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Second Semester

SC 232: Historical Geology	4
Language	3
Elective (or Language)	3
	17

Sophomore Year

First Semester	
BIOS 201: General Biology A	3
BIOS 201L: General Biology A Lab	1
SC 233: Physical Geology	4
Language	3
Fine Arts/Literature	3
EDUC 220 (SMC)	3
	14

Second Semester

BIOS 202: General Biology B	3
BIOS 202L: General Biology B Lab	1
SC 233: Historical Geology	4
Language	3
	18

Junior Year

First Semester	
PHYS 221: General Physics I	4
Science Electives	6
EDUC 340 (SMC)	2
EDUC 356 (SMC)	3
Elective (or Language)	3
	18

Second Semester

PHYS 222: General Physics II	4
Science Electives	8
EDUC 350 (SMC)	3
Theology	3
	18

Senior Year

First Semester	
Science Electives	6
EDUC 404 (SMC)	3
EDUC 449 (SMC)	3
Philosophy	3
Elective	3
	18

Second Semester

| EDUC 475 (SMC) | 12 |
| | 12 |

* One of these must be a University Seminar 180.

Preprofessional Studies

Special Programs

Double Majors in Science

In certain instances, students have the option of pursuing majors in two departments in the College of Science. Combinations that are normally approved include: Biological Sciences with Chemistry, Biological Sciences with Mathematics, Biological Sciences with Physics, Biochemistry with Physics, Chemistry with Mathematics, Chemistry with Physics, Environmental Sciences (first major) with Mathematics, and Mathematics with Physics. Examples of combinations that are normally forbidden include: Preprofessional Studies and any of the College-Semester majors with one another or with any other science major, parallel subprograms such as Mathematics and Life Sciences with Physics in Medicine and either of those with Biological Sciences or Biochemistry. All requirements of each major must be met, with no exceptions. Failing to complete a required course terminates that major for a student. Every student who wishes to major in two departments in the College of Science must prepare an agenda of specific courses to be taken, which both advisors and the dean must approve. This should be done as early as possible, but absolutely no later than the seventh day of the senior year. In certain instances, a student may possibly receive approval of a normally forbidden combination of majors, but only if a specific program has been set up by the seventh day of the sophomore year.

All double major programs in science are extremely challenging programs that require that the student take four or five science courses at a time. Thus, only students of superior scholastic ability should consider this as an option.

Students are warned that it is almost certain that completing a double major in two sciences will require total credits well over the college minimum of 124. Conflicts in scheduling of required courses may occur; neither the college nor the departments undertake to reschedule courses for the sake of double majors. For these reasons, it must be emphasized that completing a double major may well require more than four years. Only one degree is awarded (degrees in science do not specify a field).
The following schedule of classes is an example of how an M.B.A./Science program might be accomplished.

First year, sophomore year, junior year: As outlined for individual science major program in this Bulletin.

Summer Session following junior year:
- General requirements or electives: 6
- MBA 503: Excel Workshop*: 0
- MBA 504: Career Development*: 0
- Accounting Review Workshop*: 0
- Math Review Workshop*: 0

Senior Year

First Semester
- MGT 500: Statistics: 3
- ACCT 500: Accounting: 3
- FIN 510: Microeconomic Analysis: 3
- MBA 500: Management Communication I: 1.5
- Undergraduate: Science/general requirements: 3-7

Second Semester
- FIN 500: Financial Management: 3
- FIN 515: Global Macroeconomic Environment: 3
- MGT 515: Operations Management: 3
- MBA 501: Management Communication II: 1.5
- Undergraduate: Science/general requirements: 4-7

Fifth Year

First Semester
- MGT 510: Organizational Behavior: 3
- MARK 500: Marketing Management: 3
- MBA: Business Ethics Elective: 3
- MBA: International Business elective: 3
- Undergraduate: Science/general requirements: 3-6

Second Semester
- MGT 519: Corporate Strategy and Planning: 3
- MBA electives: 12
- Undergraduate: general requirements: 3-6
 - Occurs during August orientation.

Total: 172 semester hours (124 undergraduate, 48 M.B.A.)

Students involved in the M.B.A./Science program will complete their undergraduate program while completing M.B.A. requirements. M.B.A. coursework will not apply to the undergraduate degree. Sample schedules for particular majors are available from advisors or the dean’s office. Students who are behind in the completion of their major requirements are strongly recommended to obtain permission and advising before applying to the joint program.
457. Sedimentation and Stratigraphy
(3-2-4) Rigby
Prerequisite: GEOS/SC 242 or permission of the instructor.
Sedimentary environments from a physical, biological and tectonic perspective; lithification; identification of sedimentary rocks; and interpretation of the succession of layered rocks in North America. Two one-day field trips are required.

459. Paleontology
(2-3-3) Rigby
Prerequisite: SC/GEOS 232 or consent of instructor.
The fossil record—morphology, taxonomy, evolution, statistical population systematics, and paleoecology. One-day field trip is required.

491. Current Topics in Environmental Science
(3-0-3) Co-taught by the directors of the ES and STV majors.
Environmental sciences first and second majors only. The course will be divided into various modules taught by experts on campus. The modules will include environmental law, risk assessment, environmental ethics, advancements in environmental and ecological science, current topics of national interest in environmental science and others. This course is required of all first majors and recommended of all second majors. This will be first taught in the spring of 2001.

494. Senior Honors Colloquium
(1-0-1) Hahn, Delaney
Permission required.
A required seminar course for seniors in the Arts and Letters/Science Honors Program. In this seminar, selected readings are assigned, and teams of students prepare and lead discussions of the readings.

495. Science in the Classroom
(V-V-1) Staff
Permission required.
This course provides an opportunity for students to apply their science background in the community. Students interested in education after graduation will benefit from this course. Students will work with faculty, teachers and others, improving the science content of local elementary and middle school curricula. Science majors should note that this course counts as an activity course and not as a science elective.

496. Research Experience for Undergraduates
(0-V-0) Staff
Times and inclusive dates variable depending on specific program elected by the student. By permission of the dean or the director of the Summer Session only.

Science Degree Credit
Courses are generally taken in the College of Science for one of three reasons: (1) for students in either the College of Arts and Letters, or the Mendoza College of Business, or the School of Architecture, to fulfill a University requirement; (2) for students in either the College of Engineering or the College of Science to fulfill a college requirement; and (3) for students in the College of Science, to fulfill a major requirement. As a result, the College of Science offers different sequences of courses which overlap considerably in content but not level. Thus it is possible for a student who has changed his or her college or major to have taken two courses which overlap in content. Both courses will appear on the student’s transcript, but only one will count for degree credit.

As a guideline for the student and the student’s advisors, listed below are the groups of courses that overlap considerably in content. (Courses within the same group are shown in the same row and are also enclosed within parentheses; courses listed within the same column generally show a typical normal progression through coursework.) In every case, only one course per group should be counted for degree credit. Generally, only the course taken last should be counted. Students and advisors are warned not to use these groups when moving between course sequences but rather to seek advice from the offering department or the College of Science office.

For overlap with courses no longer taught in the year of publication of this Bulletin, please refer to previous editions of this Bulletin.

Biological Sciences
(105 106 113)
(101 110 155 191 202)
(107 155 202)
(156 201)
(241 341)
(250 303)
(542 414)

Chemistry and Biochemistry
(101 103 113 115 117 125 195)
(102 114 116 118 126 196)
(223 235 247)
(224 236 248)
(420 341 521)
(341L 461L)
(342 522)

Mathematics
(104 107)
(105 111 119 125 165 195)
(108 110 120 126 166 196)
(221 228 261)
(222 262)
(225 265)
(226 266)
(230 325)
(230 324)
(318 423)

Physics
(101 115 127 131 141 151 221)
(128 132 142)
(102 116 229 241 253 222)
(116 132 152 222)
(102 230 231 260)
(104 294)
(110 210)

Note also that no degree credit is given to any students for MATH 101; additionally, science majors will not receive degree credit for MATH 104 or MATH 107.
Officers of Administration

In the College of Science
FRANCIS J. CASTELLINO, Ph.D.
Dean of the College of Science
SR. KATHLEEN CANNON, O.P., D. Min.
Associate Dean of the College of Science
RUDOLPH M. NAVARI, M.D., Ph.D.
Associate Dean of the College of Science
KATHIE E. NEWMAN, Ph.D.
Associate Dean of the College of Science

In the Departments and Programs
JOHN G. DUMAN, Ph.D.
Chair of the Department of Biological Sciences
PAUL R. GRIMSTAD, Ph.D.
Assistant Chair of the Department of Biological Sciences
RONALD A. HELLENTHAL, Ph.D.
Assistant Chair of the Department of Biological Sciences
REV. JAMES J. McGrath, C.S.C., Ph.D.
Assistant Chair of the Department of Biological Sciences
CHARLES F. KULPA JR., Ph.D.
Director of the Environmental Sciences Program
A. GRAHAM LAPPIN, Ph.D.
Chair of the Department of Chemistry and Biochemistry
RUDOLPH S. BOTTEI, Ph.D.
Assistant Chair of the Department of Chemistry and Biochemistry
STEPHEN A. BUECHLER, Ph.D.
Chair of the Department of Mathematics
ALAN HOWARD, Ph.D.
Associate Chair of the Department of Mathematics
BRUCE A. BUNKER, Ph.D.
Chair of the Department of Physics
MITCHELL R. WAYNE, Ph.D.
Assistant Chair of the Department of Physics
REV. JOSEPH L. WALTER, C.S.C., Ph.D.
Chair of the Department of Preprofessional Studies
GERALD L. JONES, Ph.D.
Chair of the Program in Chemical Physics
MORRIS POLLARD, Ph.D.
Director of the Lubund Laboratory
DAN MEISEL, Ph.D.
Director of the Radiation Laboratory
MARK A. SUCKOW, D.V.M.
Director of the Freimann Life Sciences Center
RUDOLPH M. NAVARI, M.D., Ph.D.
Director of the Walther Cancer Research Center
FRANCIS J. CASTELLINO, Ph.D.
Director of the W.M. Keck Center for Transgene Research

Advisory Council

DR. BARBARA ANTHONY-TWAROG
Lawrence, Kansas
JOHN J. ANTON
San Leandro, California
DR. WILLIAM R. BELL
Baltimore, Maryland
DR. ROBERT I. BRANICK
San Francisco, California
ROBERT E. CAMPBELL
New Brunswick, New Jersey
DR. SAMUEL J. CHMELL
Riverside, Illinois
DR. WILLIAM T. CHRISTIANSEN II
Seattle, Washington
DR. MARY V. CLEMENCY
Berkeley, California
DR. JOHN N. COMITO
La Jolla, California
DR. R. LAWRENCE DUNWORTH
Huntington, West Virginia
DR. LAURA E. EIZEMBER
San Antonio, Texas
THOMAS G. FERGUSON
Parippany, New Jersey
FERNANDO GALATAS
Madrid, Spain
DR. RICHARD L. GIBNEY
Waco, Texas

DR. GREGORY A. HOFFMAN
Fort Wayne, Indiana
DR. ARTHUR L. KRANZFELDER
Indianapolis, Indiana
DR. THOMAS M. KRIZMANICH
Warsaw, Indiana
DR. ROBERT S. LEE
Pomona, California
ROBERT L. LUMPKINS JR.
Minneapolis, Minnesota
JAMES E. McGRAW
Savannah, Georgia
DR. ANN HANK MONAHAN
Shorewood, Minnesota
DR. JOHN G. PASSARELLI
Brentwood, New York
DR. WILLIAM H. RODGERS III
Norristown, Pennsylvania
DR. JAMES E. RUCKLE
Indianapolis, Indiana
DR. CAROL LALLY SHIELDS
Philadelphia, Pennsylvania
DR. WILLIAM S. STAVROPOULOS
Midland, Michigan
RAYMOND C. TOWER
Chicago, Illinois
DR. ELEANOR M. WALKER
Detroit, Michigan
DR. NORBERT L. WIECH
Phoenix, Maryland
DR. JOHN C. YORK II
Youngstown, Ohio