First Year of Studies
The First Year of Studies

First-Year Curriculum

The First-Year Curriculum consists of five courses plus physical education or ROTC each semester. The five courses are arranged as follows:

Course 1
1 semester of a University Seminar
1 semester of Composition

Course 2
2 semester courses in mathematics

Course 3
2 semester courses in a natural science

Course 4
1 semester course of an Arts and Letters
University requirement chosen from:
- history
- social science
- philosophy
- theology or fine arts
- 1 semester elective course

Course 5
2 semester courses of University or program requirements

Entering students are expected to take the entire First-Year Curriculum of five courses per semester, along with the laboratories and tutorials that accompany those courses, plus physical education or ROTC. It is possible to take an activity or experiential learning one-credit course, such as chapel choir, chorale, chorus, glee club, marching band, orchestra and other music ensembles. The college will have restrictions on how many one-credit voluntary courses may be applied to the total number of credits required for graduation from the college.

Certain courses and course areas in the First-Year Curriculum are included among the University requirements for all undergraduate students at Notre Dame. These courses and course areas are: a University Seminar; Composition; two semester courses in mathematics; two semester courses in a natural science; one semester course chosen from history, social science, philosophy, theology, fine arts; and two semester courses in physical education or in ROTC. Foreign language is not a University requirement, but it is required in the programs of the College of Arts and Letters and the College of Science.

In addition to these courses and course areas, the First-Year Curriculum includes three semester elective courses which may be used to sample particular areas of focused education or to further general education. To aid in the sampling, we recommend specific courses as the best preparation for certain of the college programs. General recommendations concerning each of the courses in the First-Year Curriculum are given in the following pages, along with descriptions of the courses named. In addition, complete instructions for making course selections and detailed course descriptions are included in the First Year Academic Guide, which is mailed to all incoming freshmen during the month of June.

A University Seminar and Composition are companion courses that all Notre Dame undergraduate first-year students take as University requirement courses. Both courses, a University Seminar and FYC 110, must be taken, one in each semester.

Course 1 – A University Seminar/Composition

A University Seminar and Composition are companion courses that all Notre Dame undergraduate first-year students take as University requirement courses. Both courses, a University Seminar and FYC 110, must be taken, one in each semester.
FYC 110. First-Year Composition

First-Year Composition is designed to help students learn how to craft an argument based on different sources of information. Three different essays are required that develop specific skills by creating university-level conversations about a public issue. The first essay is an argument in conversation with the student’s experience, the second is a researched essay in conversation with scholarship, and the third is an independent research project the student will craft.

The third essay requires the student to take on the voice of the researcher by constructing his or her own research project and interpreting the results in the context of a university-level argument. To enhance the third component of this course, there are eight sections of Composition 110 that involve a community-based learning component. In cooperation with the Center for Social Concerns, these sections place the students in learning situations in the wider community, where they will be in contact with people who are dealing with the specific content issue of their section. Students are expected to create a conversation between scholarship in that field, their community-based learning experience and the common conversation in the classroom. The content of these sections varies; there are several issues addressed that provide the common conversation for the course. For example, literacy in the community, education of the disadvantaged, Catholic/Christian identity in education, and similar topics.

The following prepare the student to read and write in the University: (1) identifying an issue amid different and conflicting points of view in the readings; (2) framing and sustaining an argument that not only includes both the analysis and exposition of information but also establishes what is at stake in the argument; (3) providing relevant advice to support a given point of view; (4) identifying and analyzing potential counterarguments; (5) developing skills for writing a University-level research proposal, for conducting original research, and for using print and electronic resources from the library.

First-Year Composition aims at developing the following critical reading skills that are complementary with the writing skills above: the ability to (1) identify a writer’s line of argument; (2) evaluate a writer’s claim in light of the evidence the writer provides, (3) identify underlying assumptions as well as what a writer leaves unsaid, and (4) evaluate the implications of an argument.

FYC 115. Advanced First-Year Composition

Advanced First-Year Composition (115) is a writing workshop designed for students who have Advanced Placement credit for FYC 110 but who seek opportunities to enhance their academic writing skills.

Course 2 – Mathematics

All Notre Dame first-year students must take two semesters of mathematics as a University requirement. Note the special sequencing of the two semesters of mathematics. Students who have credit for the first level of calculus (whether MATH 105, 119, 125 or 165) will not fulfill the University requirement unless they take a second level of calculus (MATH 108, 110, 120, 126, 166) or MATH 104, or courses chosen from grouping MATH 112-118.

Students in the College of Arts and Letters may fulfill their mathematics requirement by taking any of the calculus sequences required of students in other colleges or the School of Architecture. The only exceptions are for the arts and letters preprofessional (premedical) and math major programs (as noted below under MATH 119-120 and MATH 165-166). Additionally, there are other mathematics courses specially designed for students in this college. These include Finite Mathematics (MATH 104) and courses chosen from the grouping MATH 111-118. (Note: The course MATH 103 fulfills only a University natural science requirement and not a University mathematics requirement.)

For students in the Mendoza College of Business, the required calculus sequence is MATH 105, 108. Also acceptable are the calculus sequences required of students in the College of Engineering or the College of Science. Students in the School of Architecture take MATH 105, 110. Also acceptable are the calculus sequences MATH 105, 108; or the calculus sequences required of students in the College of Engineering or the College of Science.

Students majoring in the College of Science will fulfill their University mathematics requirement through one of the following calculus sequences: MATH 119-120, MATH 125-126, MATH 165-166 or MATH 195-196. The sequences MATH 119-120 and MATH 195-196 are acceptable for students in certain programs emphasizing the life sciences, such as biological sciences, or the preprofessional programs in either the College of Science or the College of Arts and Letters. For students in the College of Engineering, the mathematics requirement is fulfilled through the calculus sequence MATH 125-126 or MATH 165-166.

The sequence MATH 165-166, which is a more rigorous course, is designed especially for students who plan to enter either the Honors Mathematics sequence in the College of Science or the Mathematics Major in the College of Arts and Letters. It is also open to other students with strong high school mathematics backgrounds who desire a greater intellectual challenge and a deeper insight into the calculus than is offered by the other calculus sequences. The course stresses concepts and proofs.

A student who completes the MATH 105, 108 or 105, 110 sequences and then decides to enter a science or engineering program will have to take additional courses in mathematics, as prescribed by the administrator of the program.

Students planning to major in biochemistry must take MATH 125-126. Students planning to enter other science programs that require only two semesters of calculus also may use MATH 119-120 to satisfy the requirement, but they should be aware that it is not a suitable prerequisite for the sophomore sequence MATH 225, 228 or 225, 230 required by many of the College of Science programs.
Course Descriptions

MATH 104. Finite Mathematics
(3-0-3)
For students in the College of Arts and Letters. Credit is not given for both MATH 104 and MATH 107. This course is recommended particularly to students with interests in the social sciences. Elements of probability, statistics and matrix theory with applications including Markov chains, game theory and the mathematics of finance.

MATH 105. Elements of Calculus I
(3-0-3)
For students in the College of Arts and Letters, the Mendoza College of Business or the School of Architecture.
A study of differential and integral calculus as part of a liberal education. Topics include functions and their graphs, derivatives, integrals and applications.

MATH 107. Principles of Finite Mathematics
(3-0-4)
For students in Arts and Letters. Credit is not given for both MATH 107 and MATH 104. For first-year students who lack the necessary background for MATH 104. Topics include elementary probability, data analysis, statistical inference and information codes.

MATH 108. Elements of Calculus II for Business
(3-0-3)
Prerequisite: MATH 105 or equivalent. Credit is not given for both MATH 108 and either MATH 110 or MATH 120. For students intending to major in the Mendoza College of Business. It is also acceptable for students intending to major in the College of Arts and Letters. An introduction to the basic concepts of calculus, with the emphasis on problems arising in business and economics.

MATH 110. Elements of Calculus II in Basic Sciences
(3-0-3)
Prerequisite: MATH 105 or equivalent. Credit is not given for both MATH 110 and either MATH 108 or MATH 120. For students intending to major in the College of Arts and Letters or the School of Architecture.

An introduction to some basic applications of elementary calculus, especially those arising in the basic sciences. Topics will include the suspension bridge, nuclear clocks and population growth. Each topic will be preceded by a review of the required elements of mathematics and science.

MATH 111. Principles of Calculus
(3-0-4)
For students in the College of Arts and Letters. Credit is not given for this course and any other calculus course. A terminal course introducing the principles of calculus. Topics include basic properties of functions, derivatives and integrals. This course is not intended to prepare students for more advanced work in calculus.

MATH 112. Beginning Logic
(3-0-3)
For students in the College of Arts and Letters. An introduction to formal languages, systems of proof, and symbolic logic.

MATH 119-120. Calculus A and B
(3-1-4)
Primarily for students in science whose programs require a one-year terminal course in calculus of one variable. The course is also open to students in the College of Arts and Letters or the Mendoza College of Business who desire a more thorough exposure to calculus than is offered in MATH 105-108/110.

Topics include sets, functions, limits, continuity, derivatives, integrals and applications.

MATH 125-126. Calculus I and II
(3-1-4)
For students in the College of Science and the College of Engineering.

A rigorous course in differential and integral calculus of one variable. Topics include axiomatic formulation of the real numbers, mathematical induction, infima and suprema, functions, continuity, derivatives, integrals, infinite sequences and series, transcendental functions and their inverses and applications. The course stresses careful mathematical definitions and emphasizes the proofs of the standard theorems of the subject.

MATH 165-166. Honors Calculus I and II
(4-0-4)
Required for honors mathematics majors.

A rigorous course in differential and integral calculus of one variable. Topics include an axiomatic formulation of the real numbers, mathematical induction, infima and suprema, functions, continuity, derivatives, integrals, infinite sequences and series, transcendental functions and their inverses and applications. The course stresses careful mathematical definitions and emphasizes the proofs of the standard theorems of the subject.

First Year of Studies

Course 3 – Natural Science

First-year students usually take two semesters of a natural science as Course 3 in the First-Year Curriculum.

While determining which course you will take as Course 3, you should consider the following:

1. All Notre Dame students must, as a University requirement, take two semesters of a natural science before completion of their sophomore year. However, it is recommended that the natural science requirement be met in the first year. Students planning to participate in an international study program during their sophomore year must complete the natural science requirement in the first year, along with the required language for international study (see Course 5, page 63).

2. Students contemplating any of the College of Engineering or College of Science programs or preprofessional studies (premedical and other health-related fields) in the College of Arts and Letters take the natural science requirement in their first year. The natural science is often a prerequisite for other courses in these programs. Students thinking of entering any of the following programs in the College of Science are advised to take CHEM 113-114 or CHEM 117-118 as their natural science requirement in their first year. Students planning to participate in an international study program during their sophomore year must complete the natural science requirement in the first year, along with the required language for international study (see Course 5, page 63).

3. Students planning on an engineering program are required to take only one one-semester chemistry laboratory and may take CHEM 113-114 or CHEM 115-118 or CHEM 117-116 as the sequence to satisfy the requirement.

4. Prospective arts and letters or business students interested in the environmental sciences second major offered by the College of Science should take CHEM 113-114 or CHEM 117-118 as their natural science requirement.

5. Students planning to enter the Mendoza College of Business programs or the College of Arts and Letters programs other than mathematics or preprofessional studies may select freely from among any of the natural science courses offered and for which they are prepared. However, the following courses are specially designed for the students planning to enter these programs: BIOS 101 through 117, CHEM 101 through 104; MATH 103; PHYS 101, 102, 104, 110, 115, 116, 171, 174, 176; SCPP 101, SCPP 102. Students planning on the architecture program are advised to take the PHYS 115-116 sequence or PHYS 115 in the fall and a science elective in the spring semester.
6. First-year students may substitute two semesters of a foreign language in place of two semesters of science to complete first-year course requirements. (Refer to Course 5, page 69, for information on foreign language.)

Course Descriptions

Natural Sciences
Series I—Laboratory Sciences

The courses offered by the College of Science for first-year students are broadly grouped into two main categories. The first series of courses, Series I, Laboratory Sciences, listed below, are the "flagship" courses in each discipline. They are intended for students who are planning to major in one of the sciences or in engineering or perhaps would prefer an in-depth discussion of a particular field of study.

BIOS 155-156, 155L-156L. Biological Sciences I and II
Prerequisites: High school biology and chemistry. BIOS 155 is a prerequisite for BIOS 156.
Corequisite: CHEM 113-114/CHEM 117-118. Restricted to biological science and biochemistry intents/majors.

This is a two-semester course with three lectures and one three-hour laboratory a week (four credit hours per semester) for first-year students contemplating a career in biology, biochemistry or related areas. This sequence is designed to properly prepare students for more advanced biology courses to be taken in subsequent years. It is, therefore, not a typical survey course but rather a course which will emphasize development of biological concepts in selected areas utilizing an experimental approach to the subject matter.

The topics presented in the first semester in the context of modern evolutionary theory include biological diversity, ecology and organismic physiology. The second semester follows with a description of biologically important molecules and then proceeds to cell structure, energy metabolism and classical and modern genetics.

The laboratory sessions are an integral part of this course, which will complement the lectures. In addition, students learn to present their findings as they would for a journal article or a scientific meeting (seminar and poster presentations). The lab sessions will offer the student direct experience in using the scientific method and simultaneously provide an introduction to numerous biological analytical techniques.

CHEM 113-114. General Chemistry I-T and II-T
Prerequisites: High school chemistry and physics and three-and-one-half units of mathematics. This course offers students within any degree program a full year of lecture and laboratory work, supplemented by weekly tutorial sections (four credit hours per semester). The general topics, textbook and laboratory are the same as those for CHEM 117-118.

Introduction to the principles and concepts of chemistry and its application in the world. Topics include periodic properties of the elements, reaction stoichiometry, atomic theory, molecular structure and bonding, acids and bases, reduction-oxidation reactions, gas laws, thermochemistry, equilibrium and chemical kinetics. Lectures, demonstrations, laboratory experiments and tutorial sections are integrated to promote a deeper understanding of chemistry fundamentals and to develop the analytical skills necessary for solving problems.

CHEM 113-114 is designed to help students gain a deeper understanding of chemistry fundamentals while developing the analytical skills necessary for solving problems. In the weekly tutorials, students will learn to work in small groups at solving problems collaboratively; students will actively learn how to apply and integrate chemistry concepts from the lecture, laboratory and text. The extra guidance and interaction offered in tutorial sections can help students discover new and effective ways to analyze and work through problems.

CHEM 114 will serve as a prerequisite course to all upper-level courses which list CHEM 118 as a prerequisite.

CHEM 115-116. General Chemistry I and II
Prerequisites: High school chemistry and physics and three-and-one-half units of mathematics. This course offers students within any degree program a full year of lecture and laboratory work for students intending to major in science and engineering who do not need a full year of experimental chemistry. Students needing a full year of experimental chemistry should take CHEM 117-118 (see below), which includes the laboratory as an integral component.

This lecture course covers classical/modern chemistry, with applications, in the approximate order: stoichiometry and classical atomic theory of chemistry; periodic properties; gas laws; chemical equilibrium; solution chemistry (acids and bases, solubility, physical properties of solution); thermochemistry; chemical kinetics; modern quantum theory of atomic and molecular structure and periodic properties.

Descriptive chemistry is included throughout all developments. Frequent live demonstrations and classroom computer use emphasize the unifying experimental and theoretical aspects of the subject.

CHEM 117-118. General Chemistry I and II
Prerequisites: High school chemistry and physics and three-and-one-half units of mathematics. This is intended as the primary course for most science and engineering students, as it includes a full year of both lecture and laboratory work (four credit hours per semester). The lecture work is the same as CHEM 115-116 (see above). Additional related laboratory work is included. Some potential engineering students who may require only one semester of lab work may take a combination of one semester of CHEM 115-116 and one semester of CHEM 117-118 to meet that need.

The lab introduces experimental chemistry with examples from all areas of chemistry. The experiments range from traditional wet chemistry to modern instrumental analysis. The lab consists of pre-lab lecture and individual laboratory work. Computers are integrated into the experiments to promote problem-solving skills and provide experimental simulation.
CHEM 125-126. General Chemistry I-M and II-M
Prerequisites: High school chemistry and physics; three-and-one-half units of mathematics.
Corequisite: MATH 125-126.
A course in modern chemistry recommended for students with a special interest in the subject, especially those intending to major or wishing to explore a major in chemistry or biochemistry. A thorough and rigorous study that provides a background for further study in chemistry for students of science or engineering. This four-credit-hour course integrates the class and laboratory work closely, seeking to emphasize the unifying experimental and theoretical aspects of the subject. Contemporary studies provide a basis for a critical understanding of the evolving nature of this science and of its importance in the modern world. Students will work extensively with class and laboratory materials developed especially for this course.

GEOS 131. Physical Geology
Prerequisite: Open to engineering and science common core intents.
An introduction to the Earth: its processes, composition, evolution, and structure. The course introduces student to mineralogy, petrology, structural geology, oceanography, surficial processes, and environmental geology. Lecture and laboratory meetings.

PHYS 131-132. General Physics I-M and II-M
Prerequisites for PHYS 131: High school chemistry and physics and three-and-one-half units of mathematics.
Corequisite for PHYS 131: MATH 125 or equivalent.
Prerequisite for PHYS 132: PHYS 131 or 151, and MATH 125.
Corequisite for PHYS 132: MATH 126 or equivalent.
A two-semester sequence in general physics. Topics include the kinematics and mechanics of a particle; work, energy and momentum, and associated conservation laws; rotation, torque and angular momentum; oscillations and wave motions; electrostatics, electric current and circuits; magnetism, electromagnetic induction and waves; geometrical optics. A course designed for students intending to enter the Department of Physics. Laboratory meetings each week.

Series II—Topical Sciences
The second series of courses, Series II, Topical Sciences, is designed for those first-year students who are planning eventually to enter the College of Arts and Letters, the Mendoza College of Business or the School of Architecture. These courses differ from the courses noted above chiefly in that they are somewhat interdisciplinary in nature and that they focus on themes which may have, in part, an ethical or value-related dimension. It should be emphasized that these courses are often just as rigorous and intellectually demanding as the “flagship” courses offered by the college.

BIOS 101. Human Genetics, Evolution and Society
Prerequisite: One year of high school biology and chemistry.
This course is designed for non-science majors and will address fundamental biological principles using the two cornerstones of modern biology: genetics and evolution. Elementary chemistry, cell theory, reproduction and development will also be covered. The emphasis, however, will be on human genetics and will include such topics as the cause and effects of genetic abnormalities, the genetic basis of intelligence and skin color, genes and cancer, and elementary population genetics. The state of “genetic engineering” research, the recombining DNA controversy including the implications to society and to the individual of this kind of research will be presented.

BIOS 102. Plants, Food and Society
Overview topics will cover primary reproductive biology in plants and influences in biotechnology topics, chiefly involving DNA and gene-splicing. World food concerns and environmental consequences of agronomy occupy a good portion of class time. Video presentations each Friday are on random topics covered in lecture. The role of fungi in fundamental situations of plant disease and the degradation of waste materials conclude the topics of environmental influences.

BIOS 106. Common Human Diseases
Prerequisite: One year of high school biology; one year of high school chemistry.
The goal of this course is to introduce students to diseases that may afflict them, their parents and/or their children, as well as other health problems common to the tropics. It will provide the student with the information necessary to understand the biology of the disease process.

BIOS 107. Environment and Evolution
Emphasis will be placed on today’s ecological and environmental problems and the possible effect they may have upon the future evolution of life on Earth. Topics will generally include an overview of the theory of evolution and a discussion of ecological principles as observed at the population, community and ecosystem levels. The influence of cultural and political factors will also be discussed. Each academic year, one or more more sections will be offered; some may be individually subtitled, allowing for a one-time presentation of specific topics within the context of “environment and evolution” in addition to multiple-semester presentations of a specific topic (e.g., Evolutionary Ecology, Ecology and Environmental Issues, Freshwater and Society, Environmental Issues and Solutions).

BIOS 108. Revolution in Biology
The goal of this course is to teach six basic tenets of biology; the historical context for each discovery; the scientific and technical advances made and their ethical implications. The topics will include genetics and evolution: cell biology and biochemistry; the germ theory; and ecology. A term paper is required. BIOS 108 is generally offered only in the summer session.
BIOS 109. Human Reproduction and Society
This introductory course is offered to non-science majors. Basic aspects of human development and reproduction will be covered, from conception through sexual senescence. In addition, the science behind currently debated social issues will be discussed. Possible topics are causes and treatment of infertility, in vitro fertilization, control of male and female fertility, pregnancy and paternity testing, prenatal genetic testing, gene therapy, the effects of legal and illegal drug use on reproductive function and embryonic/fetal development, and the impact of current health care reform legislation on prenatal care.

BIOS 110. Genetics, Technology, and Society
The objectives of this course are to give students an overview of human genetics and an appreciation for the relatively new field of molecular biology that is currently being used to study human genetic diseases. Genetic technologies such as cloning and manipulating genes, genetic biotechnology, gene therapy, DNA testing, and so forth will be emphasized. The ethical, social, and legal implications of these technologies will also be covered. In addition, this course will address the role of genetics in human cancer, behavior, obesity, intelligence, and sexual orientation.

BIOS 116. Biology and Nutrition
Prerequisite: One year of high school biology and chemistry.
This course, designed for non-science majors, will provide a general overview of the field of nutrition. The course will be in a lecture format, with online and other computer activities along with hour exams and a final exam. Topics to be presented include an introduction to the field of nutrition, nutrient composition of foods, recommended intakes and health claims, a review of the nutrients (i.e., carbohydrates, lipids, proteins, vitamins, and minerals), food intake and energy balance, sports nutrition, eating disorders, current issues of food safety, fads, and other aspects of nutrition encompassing nutrition during all stages of life.

CHEM 101. Foundations of Chemistry
Not open to students who have taken CHEM 103, 115 or 117.
This course covers forms, properties, and separation of matter, atomic structure and periodicity, nuclear chemistry, chemical bonding and structure, reactivity with applications to acid-base and oxidation-reduction reactions, chemistry of carbon and living systems.

CHEM 102. Chemistry, Environment and Energy
Prerequisite: CHEM 101 or permission of the instructor. Not open to students who have taken CHEM 116 or 118.
Chemistry of the atmosphere, hydrosphere and lithosphere, agricultural chemistry and pesticides, food and drugs, hazardous and solid wastes, recycling, fossil fuels, and nuclear, solar, geothermal and other types of energy.

MATH 103. Processes of Mathematical Thought
For students in the College of Arts and Letters or the Mendoza College of Business.
A study of mathematical thought as an analytical tool to solve real-life problems. The class is divided into teams, each analyzing a topic from such areas as commercial games, consensus within diversity, governmental economic planning and chaos theory. Teams will present their findings in a seminar format. This course satisfies one semester of the University science requirement but does not count toward the University mathematics requirement.

PHYS 101-102. Concepts of Physics I and II
This course is intended for students who will not be majoring in science or in engineering. A study of the major concepts and laws of classical and modern physics, in some historical context, provides the student with a foundation for understanding, at a conceptual level, natural phenomena and technological devices encountered in everyday experience.
PHYS 101 will include a study of motion and Newton’s laws, momentum and energy, the structure of matter, thermodynamics and relativity (taught in fall semester). PHYS 102 will cover wave motion, electromagnetism, light, and the quantum nature of the atomic and subatomic world (taught in fall semester). PHYS 101 is not a prerequisite for PHYS 102. This course fulfills the University science requirement.

PHYS 110. Descriptive Astronomy
Prerequisite: Three units of high school algebra and geometry. One unit of high school science.
A description of the motions and structures of the earth, moon and planets. An exposition of the modern theories of solar and stellar structure, nebulae and galaxies. Basics of stellar evolution, black holes, quasars and other recent developments. An introduction to cosmology. This course includes elementary observational projects. The course is open to all students. It fulfills one semester of the University science requirement.

PHYS 115-116. Principles of Physics I and II
Prerequisite: A knowledge of algebra and trigonometry and the ability to use them in solving problems. High school chemistry is recommended.
PHYS 115 is a prerequisite to PHYS 116.
A course intended for students who desire a grounding in all the major principles of physics but who plan to major in some area other than science or engineering. The ability to apply these principles to the solution of problems is a major goal of the course. The following topics are normally included: Kinematics and dynamics of a particle, equilibrium of forces and torques, work, energy, momentum, collisions, harmonic motion, gravitation and circular orbits; wave motion, interference, standing waves, the Doppler effect; temperature, heat, first law of thermodynamics, kinetic theory of gases; electric charge, Coulomb’s law, electric field and potential, current, resistance, DC circuits; magnetic force, electromagnetic induction; the nature of light, the spectrum; photons, photoelectric effect, Compton scattering, deBroglie waves, energy levels, X-rays; nuclei and radioactivity; special relativity. Additional material will be at the discretion of the instructor. The division between PHYS 115 and 116 will depend on the order of presentation. This course fulfills the University science requirement.

PHYS 171. Elementary Cosmology
Prerequisites: High school physics, algebra and trigonometry.
An elective course for students planning to major in the College of Arts and Letters or the Mendoza College of Business. It is designed to acquaint students not mathematically inclined with the most important discoveries in physics of the last few decades and how they have altered our perceptions of the origin and structure of the universe. The course examines such questions as “Where did the universe come from?” “Why do scientists feel sure that it was born in a cosmic fireball called the Big Bang?” and “Where did the Big Bang itself come from?”
This is a reading-intensive course based on popularizations of science written for the curious and intelligent layperson. The emphasis is on class discussion of the readings. This course satisfies one semester of the University science requirement.

PHYS 172. Topics in Biophysics
Prerequisites: High school physics and biology. For students majoring in the College of Arts and Letters or the Mendoza College of Business, this course satisfies one semester of the University science requirement. For other students, this course counts as a general elective.
This course provides an overview of how the laws of physics can be used to explain biological systems and of the physical principles that underlie modern imaging techniques (MRI, CAT, etc.). Examples to be discussed include bioelectrical processes, e.g., the heart, transport across cell membranes, and electroosmosis by eels. Vision, hearing, blood circulation, and respiration are explained as biophysical processes. The course presents principles in a descriptive manner; no previous formal study of biology is required or assumed.

PHYS 174. Physics of Music and Sound Reproduction
Prerequisites: High school algebra, geometry and trigonometry.
The physics of sound reproduction, including the acoustical and electronic production and reproduction of sound. The course will include basic Newtonian mechanics, oscillating systems, wave motion, sound, Fourier synthesis, musical acoustics including detailed descriptions of various acoustical instruments, introduction to electricity and magnetism and the physics of microphones, loudspeakers, phonographs, tape recording, digital compact discs and electronic synthesizers. This course satisfies one semester of the University science requirement.
PHYS 176. Technological Risk
Prerequisites: None.
A survey of risk issues in our technological society. Topics include the perception, measurement, assessment, management and politics of technological risk, together with a discussion of possible ethical bases for risk/benefit analysis. Case studies will include highway safety, air transportation, chemical carcinogenesis, fossil fuels (including global warming and ozone depletion issues), and ionizing and non-ionizing radiation (from high-level radioactive waste to electric blankets). This course is intended for students planning to major in the colleges of arts and letters or business and satisfies one semester of the University science requirement.

PHYS 178. Physical Methods in Art and Archaeology
Prerequisite: High school physics and algebra.
A course that gives an overview of the various physics-based analysis and dating techniques used in art and archaeology. The course will cover topics such as X-ray fluorescence and X-ray absorption, proton-induced X-ray emission, neutron-induced activation analysis, radiocarbon dating, accelerator mass spectrometry, luminescence dating, and methods of archeometry. Multiple examples of the use of the techniques in art and archaeology will be given, e.g., under X-ray techniques and accelerator mass spectrometry, the analysis of ancient coins and violin varnish and the Iceman and the Turin Shroud are used respectively as examples. Physics principles of the methods and techniques will be taught in a descriptive manner. This course is intended for students in arts and letters or business and satisfies one semester of the University science requirement. If taken by science or engineering students, this course counts as general elective credit.

SCPP 101. Medical Science from Birth to Death
First-year students only.
The course will cover the science behind the technological advances used in various medical subspecialties that raise ethical questions from the beginning to the end of life. It will provide students with an overview of the biotechnological advances that are in the news, reshaping the scientific culture of modern medicine and challenging personal and societal human values. This course fulfills one semester of the University science requirement.

Course 4 – History, Philosophy, Social Science, Theology or Fine Arts/Elective
Every Notre Dame first-year student must take at least one semester of either history, philosophy, social science, theology, or fine arts/literature as a University requirement during their first year of studies. The courses available in the First-Year Curriculum for satisfying this requirement are listed below. Limited spaces in fine arts courses are available to first-year students. The literature requirement typically is satisfied after the first year or by taking a literature University Seminar in the first year.
ANTH 109. Introduction to Anthropology
This lecture course, designed specifically for first-year students, is an introduction to one of the most exciting of the social sciences. Anthropology helps answer some of the most basic questions about ourselves and others: How and why did humans evolve? How did the human culture develop and why the many differences? How does human language work and in what ways does it affect our ability to perceive the "real" world? Why are there so many different cultures? Are they all equally valid or good? Are human behavior and human nature best explained by reference to genes, adaptation to environment or the symbolic nature of culture itself? Exploring these questions offers students a fascinating opportunity to learn more about the nature of the societies in which we live. This is a one-semester course offered each semester. ANTH 109 is an elective of significance to a liberal education.

ARHI 251-252. Art Traditions I and II
This is a two-semester survey of the history of Western art, either semester of which may be taken alone. In the fall, the course follows the development of art, from the first remarkable images painted by prehistoric men on the ceilings and walls of the caves of Altamira and Lascaux, through the glorious era of Greek humanism and Roman grandeur, to the period which produced the soaring, magnificent French Gothic cathedrals. In the spring semester, the course begins with a consideration of the Italian Renaissance and the reintegration of humans and their world in the work of such artists as Leonardo Da Vinci and Michelangelo. It continues with an examination of the expansive and opulent art of the baroque and then concludes with a discussion of the modern era from romanticism to impression, from cubism to abstract expressionism, and from pop to today. Either course satisfies the University's fine arts requirement.

ECON 124. Principles of Economics II
An introduction to economics, with particular attention to the pricing mechanism, competitive and monopolistic markets, government regulation of the economy, labor-management relations and programs, income determination and public policy, foreign trade, and the international economy.

FIT 104. Basics of Film and Television
Corequisite: FIT 104L. Serves as a prerequisite to upper-level film and television courses. This is an introduction to film and television studies from a critical perspective, examining the form, meaning, and style of film and television texts. Students develop skills in the critical analysis of film and television. With a strong emphasis on narrative, the course examines film and television techniques, genre, stardom, and authorship. Students also will become acquainted with the major approaches to the study of film and television. Evening lab screenings are required.

FTT 105/205. Introduction to Theatre
Serves as a prerequisite to upper-level theatre courses. This is a study of theatre viewed from three perspectives: historical, literary, and contemporary production practices. Through lectures, readings, and discussions, students will study this art form to understand its relevance to other art forms and to their own lives. A basic understanding of the history of theatre and the recognition of the duties and responsibilities of the personnel involved in producing live theatre performances allows students to become more critical in their own theatre experiences. Requirements include attending live theatre performances and viewing videotapes.

POLS 140. Introduction to American Politics
This course surveys the basic institutions and practices of American politics. The course emphasizes the institutional and constitutional framework of American politics so as to identify the key ideas needed to understand the subject and develop a basis for evaluating politics today. The premise of the course is that American government has advantages and disadvantages alike, which come from the same source—the Constitution and the American approach to power that it reflects. In particular, we will look at current events in light of the tendencies of the last 30 years, focusing on the changing roles of parties and interest groups—the traditional links between government and the people. Although the course should prepare prospective government majors for further study of American politics, its primary aim is to introduce students of all backgrounds to the information and ideas that will enable them to understand American politics better, and to help them become more thoughtful and responsible citizens. This course fulfills a political science major requirement.

POLS 141. Introduction to International Relations
This course provides a basic understanding of the major concepts, issues, and theories in international relations. What explains conflict and cooperation in world politics? We will examine competing theories of state behavior, briefly review the evolution of international history, and discuss enduring and contemporary issues such as interstate war; civil, ethnic, and religious conflict; proliferation of weapons of mass destruction; terrorism; international trade and finance; globalization; the information revolution; and international law, organization, and institutions. The ultimate goal of the course is to enhance our capacity to think critically about the basic forces that drive international politics, thereby improving our ability to evaluate and shape our world. Discussion sections use historical and current events to illustrate concepts introduced in lectures. This course fulfills a political science major requirement.

POLS 142. Introduction to Comparative Politics
This course is an introduction to the main themes and areas of the comparative politics subfield. The course covers issues such as regime type, Leninism and socialism's collapse, authoritarianism and authoritarian collapse, Islam and theocracy, transitions to democracy, democratic state-building, political parties and electoral systems, economic reform, and civil and ethnic conflict. Geographically, the course introduces students to the institutions and politics of most regions of the world. The emphasis is on East Asia, Africa, the former Soviet Union, South Asia, and Latin America. This course fulfills a political science major requirement.

HIST 111. Western Civilization I
A survey of the major events and issues in Western history, from the emergence of civilization in Egypt and Mesopotamia until the 15th century. Subjects studied at length include Greek culture, democracy, and imperialism; the Roman Republic and Empire; and the emergence of the Christian civilization of the Middle Ages. The contributions of Africa and Asia to Western culture will be discussed.

HIST 112. Western Civilization II
This course will examine important topics in European history from the Renaissance to the present: the evolution of statecraft in Machiavelli's Florence; the impact of the Reformation on European society and political life; the English Civil War and the revolutions of the 17th century; the Scientific Revolution and the Enlightenment; the French Revolution and its aftermath; the development of liberalism, socialism, feminism and nationalism in the 19th century; the evolution of 20th-century warfare; the Russian Revolution of 1917; the bloody history of fascism and Nazism; the Holocaust; the "atomic age," the Cold War and the collapse of the Soviet empire. Spring only.
HIST 115. The Growth of the American Nation
A survey of the social, cultural and political history of the British North American Colonies and the United States to the close of the Civil War. Organized around the question of American “nationhood,” topics include Indian, European and African encounters; regional and sectional divergence; religious impulses and revivals; imperial conflict and revolution; constitutional development and argument; immigration and nativism; the frontier hypothesis and westward expansion; slavery and emancipation; sectional division and the Civil War.

HIST 116. The Development of Modern America
This is a one-semester course without prerequisites. It may be taken in combination with HIST 115, Growth of the American Nation, but either course may also be taken without the other.

This course is a topical and chronological survey of the political, social, diplomatic and economic life of the American people from the end of the Civil War to the present. The principal areas of investigation will include the Reconstruction period, the age of industrialism, the progressive era, World War I, the Great Depression and the New Deal, World War II and the Cold War, the revolution in Civil Rights, Kennedy-Johnson and the war in Vietnam, and the troubled presidencies of Nixon, Carter and Reagan.

HIST 177. Introduction to Asian History
This course serves to introduce students to the basic historical narratives of Asian histories, the issues that are important, and the significant writings in the field.

HIST 243F. Middle East History
This course is designed as an introduction to the peoples and cultures of the Middle East, Mesoopotamia and Syria/Palestine. The distant history of the region will be viewed through the lens of archaeology, the writing systems and the mythologies of the region. Special attention will be focused on the complex relationships that exist among the languages, religions and cultures of the region associated with Abraham, Jesus and Mohammed. Problems of modernity, the emergence of national identities and the upheavals of the 20th century also will be addressed.

HIST 261F. American Catholic Experience
A survey of the history of Roman Catholicism in the United States from colonial times to the present, with emphasis on the 20th-century experience. The first half of the course covers the Catholic missions and settlements in the New World, Republican-era Catholicism’s experiment with democracy and the immigrant church from 1820 to 1950. The second half of the course focuses on the preparations for, and impact of, the Second Vatican Council (1962-65). Assigned reading includes a packet of articles and primary sources about the Liturgical Renewal, Catholic Action, social justice movements and other preconciliar developments. Spring only.

MUS 120. Introduction to Music
A music appreciation course requiring no musical background and no prerequisites. General coverage of the various elements, styles and structures of music. Recommended for all first-year students.

MUS 121. Introduction to Jazz
A music appreciation course requiring no musical background and no prerequisites. General coverage of the history, various styles and major performers of jazz with an emphasis on current practice. Recommended for all first-year students.

MUS 122. Gender, Race, Class, Sexuality
A music appreciation course requiring no musical background and no prerequisites.

MUS 123. Introduction to Music of the Catholic Rite
This course covers the music of the Church from Gregorian chant through repertoires composed in response to Vatican II. No prior musical experience is required. Recommended for all first-year students. Fall only.

MUS 124. Introduction to Mozart’s Operas
A study of the background, structure and styles of Mozart’s comic and serious operas. Recommended for all first-year students.

MUS 125. Introduction to Classical Symphony
A study of the symphonic composers of music, emphasizing the compositions of Haydn, Mozart, Beethoven and Brahms. Students learn to hear the idiom and structures of this music. A music appreciation course requiring no background. Recommended University elective. Recommended for all first-year students. Spring.

MUS 126. Introduction to American Music
An appreciation-level course that concentrates upon the major stylistic and historical developments of American music since the colonial period.

MUS 127. Gender, Race, Class, Sexuality
A music appreciation course requiring no musical background and no prerequisites.

MUS 129. Introduction to Music of the 18th Century
Introduction to the major composers of the 18th century, including Bach, Handel and Mozart, and the genres of the century. No musical background required. Fall only.

MUS 130. Theory for Non-Majors
A one-semester survey of the structure of tonal music. Topics covered include chord formation, voice leading, harmonic progression, cadences, dissonance treatment and form. No musical background required.

MUS 241. Music History I
A survey of music. The study of the major forms and styles of Western history. Musical background required.

PHIL 101. Introduction to Philosophy
This course is a general introduction to philosophy and emphasizes such perennial topics as the existence of God, human freedom and moral obligation. The course is also intended to sharpen the student’s skills of critical thinking.

Designed for first-year students, this course (or its sophomore-level equivalent, PHIL 201) is a University requirement and a prerequisite for all other philosophy courses. It typically requires both exams and short papers and combines lectures and discussion.

PSY 111. Introductory Psychology
No prerequisite.

The course poses and attempts to answer such questions as: What are psychologists and what do they do? What methods can be employed to further
our understanding of behavior? How is the behavior of one person affected by that of others? What is intelligence and how does it develop? How does a child become an adult? How do we perceive the world around us? What role do heredity and the environment play in determining our behavior? What physiological variables affect behavior? What motivates people to behave as they do? What are emotions, what determines them and how can they be measured? What are the various states of consciousness and what alter them? What does it mean to be mentally ill, how does one get this way and what can be done about it? This is a lecture-course team taught by three instructors, each covering each one’s respective specialty area. While Introductory Psychology is a required course for the psychology major, it is designed as an elective for any student with an interest in the behavior and interactions of human beings.

SOC 102. Understanding Societies

No prerequisite.

Societies are the contexts for all that we experience as human beings, but we often take these settings for granted. Our families, schools and jobs, beyond being avenues for our own contact with the world, are also major components of the society in which we live. Moreover, these components influence the very ways in which we live. Sociology is the discipline that attempts to understand how societies work, and this course is a basic introduction to that discipline. In it, you will learn about sociology’s varied intellectual origins, its dual organization as a humanistic and a scientific pursuit and — most broadly — the uncommon perspective that it offers for viewing human activities and aspirations.

This is a one-semester course designed for the general education of all first-year students. It employs a lecture-discussion format in conjunction with assigned texts.

SOC 122. Social Psychology

No prerequisite.

Social psychology studies how individuals and groups are influenced by other individuals and groups. In this broad introduction to social behavior, we will learn about what makes people do the things they do: What decides who someone will fall in love with? Where do aggressive, violent, and criminal behaviors come from? Why are some people more charitable than others? Why do some people obey authority and conform while others always have to buck the trend? Why are some people lazier when they work in groups? What is the source of people’s stereotypes and prejudices? How can we overcome them? And finally, what makes us become who we are?

THEO 100. Foundations of Theology: Biblical/Historical

This course, or its sophomore-level equivalent (THEO 200), is a prerequisite for all other theology courses. The course introduces students to theology as an academic discipline through an introduction to the Hebrew Bible, the New Testament and Christian literature of the post-biblical centuries.

Elective

The first-year curriculum provides an opportunity for each first-year student to take three elective courses. Typically, these courses are used to satisfy University or intended college program requirements or to sample areas that might be of interest. Specific recommendations for the Course 4 elective are made for only three of the intended college programs. The College of Engineering recommends that first-year students planning programs in engineering take PHYS 131 in the spring semester as the Course 4 elective. Architecture students intending the combined College of Arts and Letters-Engineering Program are advised to take PHYS 131 in the spring semester.

ARCH 143G. Graphics I: Drawing

Instruction and practice in drawing as a means of exploring and communicating formal and theoretical concepts. Aspects of freehand drawing in pencil, charcoal, and watercolor are taught with subjects from buildings, nature, and the human figure. The course is open to all students. Studio format. Strongly recommended for those entering the architecture program.

PHYS 131. General Physics I

For a description of this course, please refer to page 64 of this section of the Bulletin.

Course Descriptions for Electives

69

Fist Year of Studies

The following suggestions are offered as a guide in selecting the Course 5 electives.

1. Any of the arts and letters courses listed under Course 4 may be taken as a Course 5 elective.

2. A language course.

(a) Language is required by the College of Arts and Letters and the College of Science. The College of Arts and Letters requires its students to complete at least the intermediate level of a language and, regardless of initial placement level at Notre Dame, to take at least one course in the language at Notre Dame. In the College of Science, students who place higher than the intermediate level are considered to have fulfilled the language requirement and need not take any further courses in language. Language courses, however, are good electives for the other college programs.

(b) The languages available include Arabic, Chinese, French, German, Greek, Irish, Italian, Japanese, Latin, Portuguese, Russian and Spanish. Various levels of language instruction are available. Placement for students with some background in Chinese, French, Spanish, Japanese, Latin or German will be made only by examination: the SAT-II Subject Test or AP test or a Notre Dame departmental exam is required. (Refer to Credit by Examination, page 64.)

(c) The first-year student who plans to participate in an International Study Program must use the Course 3 and Course 5 slots to take both a natural science and foreign language. There is no opportunity to take a natural science course abroad, and the requirement must be satisfied by the end of the sophomore year.

3. A second science course.

The programs in the College of Science in the basic sciences — biology, biochemistry, chemistry, mathematics and physics — include more than one science. The second science course sequence for the chemistry and mathematics programs is PHYS 131-132; for the biochemistry and biology programs, it is BIOS 155-156; and for the physics program, it is PHYS 151-152. (Refer to Natural Science, Series I courses, page 57.)

4. A special course.

(a) The College of Arts and Letters recommends that students intending programs in art take DESN 111-S and ARST 121-S; students intending programs in music take MUS 231 and 232 and a one-credit skills course each semester.

(b) Students intending to major in architecture are expected to take ARCH 143G and 144.

(c) College of Engineering intents should enroll in EG 111-112.
ARCH 132G. Graphics II: Drafting
Instruction and practice in the skills necessary to draw and think like an architect. The course emphasizes mechanical drawing with exercises that include descriptive geometry, perspective, and other means of representing three-dimensional architectural problems with two-dimensional techniques, including those using computers. The course is open to all students. Studio format. Required for those intending to enter the architecture program.

ARCH 144. Analysis of Architectural Writing
This course examines concepts of architecture within writings about architecture. It explores universal issues of function, strength, and beauty, along with the interactions between theory and practice and the tensions between tradition and innovation. The coursework consists of analytical drawings, design exercises, and exams. It is open to all students. Required for those intending to enter the architecture program.

ARST 121S. Drawing I
No prerequisite.
A foundation course dealing with form depiction in its many aspects and modes. Intended for students entering studio practice for the first time. The student will learn the basics of drawing: proportion, perspective, light and shade. The student also will use a variety of media: pencil, pen and ink, charcoal, etc. Most of the work will be done in the studio, which meets six hours a week, with occasional outside assignments.

ARST 133S. Painting I
A basic course in oil painting systems, techniques and composition, including stretcher and canvas preparation.

ARST 149S. 3-D Foundations Studies
Open to a limited number of students. An introduction to the basic techniques, materials and tools of the sculptor for those who wish to major in art. The student will explore the sculptural potentials of clay, wood, metal and paper in both figurative and abstract directions using fabrication, lamination, modeling and casting techniques. Emphasis is on technique and individual ideas. This course meets six hours per week.

DESN 111S. 2-D Foundations Studies
Open to a limited number of students. Basic Design is a foundation course for those who wish to major in art. It is a course dealing with the fundamentals of two- and three-dimensional design. This course meets six hours per week.

EG 111-112. Introduction to Engineering Systems I and II
Corequisite: MATH 125 or equivalent. Required for engineering intents.
This sequence of two introductory courses is intended to introduce engineering intents to the role of engineers in society and to illustrate how engineers design systems and solve problems. It introduces basic engineering skills, including how to identify, formulate and solve problems, how to verify and communicate results, and how to use computers to aid in this process. The students are actively engaged in applying engineering design methods to solve practical problems. This involves a team approach to plan, design, analyze, implement, evaluate and report engineering activities.

The students are introduced to the University computer systems and resources and use various computers to perform automated calculations, information processing and engineering system control. Further instruction is provided in the use of spreadsheets and documents. Computer-based problem-solving environments, such as MATLAB, and structured language programming of microcontrollers are integrated into the courses as essential tools for today's engineers.

Group projects are used to introduce issues in multidisciplinary engineering system design. Project topics emphasize the use of modeling, analysis and simulation. Students are expected to design, fabricate, demonstrate and document the design of various simple systems, with particular emphasis on the use of microprocessors for information gathering and control.

MUS 131-132. Music Theory I and II
A systematic approach to the understanding and manipulation of the basic materials of music. Required of and intended for music majors but open to students with sufficient musical background, with permission of instructor.

MUS 233-234. Musicianship I and II
Exercise and mastery of basic skills in music: melodic, harmonic, rhythmic and keyboard. To be taken along with Theory I and II. Required of all students intending to major in music. One credit.

Physical Education or Reserve Officers Training Corps Program
All Notre Dame first-year students must take two semesters of physical education as a University requirement. However, first-year students who enroll and remain in an ROTC program are exempted from physical education.
Advanced Placement Examination	Advanced Placement Grade Required	Number of Credits Awarded	Notre Dame Course Typically Waived
American History | 4 | 6 | History 115 and 116
Art History | 4 | 6 | Art Traditions 251 and 252
Art Studio | 4 | 6 | 3D Foundations Studies 149S and Drawing I 121S
Biology | 5 | 8 | Biological Sciences 201 and 202 and 201L and 202L
Biology AB | 4 | 3 | Biological Sciences 101
Calculus AB | 3 | 3 | Mathematics 105
Calculus BC | 3 | 3 | Mathematics 105
Calculus BC (AB Subscore) | 3 | 3 | Mathematics 105
Calculus BC (AB Subscore) | 4 | 4 | Mathematics 125
Chemistry | 5 | 8 | Chemistry 117 and 118
Chemistry | 4 | 3 | Chemistry 101
Design | 4 | 3 | 2D Foundations Studies 111S
Economics (Macroeconomics) | 5 | 3 | Economics 123
Economics (Microeconomics) | 5 | 3 | Economics 124
Economics (Macroeconomics and Microeconomics) | 4 | 3 | Economics 115
English (either exam) | 4 | 3 | FYC 110 (formerly English 110)
European History | 4 | 6 | History 111 and 112
Government (American Politics) | 4 | 3 | Political Science 140
Government (Comparative) | 4 | 3 | Political Science 142
Latin (either exam) | 4 | 6 | Latin 102 and 103
Physics B | 5 | 8 | Physics 221 and 222
Physics B | 4 | 6 | Physics 115 and 116
Physics C, Mechanics | 5 | 4 | Physics 131
Physics C, Mechanics | 4 | 3 | Physics 115
Physics C, Elec. and Magnetism | 5 | 4 | Physics 132
Psychology | 4 | 3 | Psychology 111
Statistics | 4 | 3 | Business Administration 295 (elective credit)

Credit by Examination

Entering first-year students may become eligible for credit by examination in four ways: (1) through the Advanced Placement Program administered by the College Entrance Examination Board, (2) through the SAT II-Subject Tests in French, German and Spanish, (3) through the International Baccalaureate Program administered by International Baccalaureate North America, and (4) through the Notre Dame Examination Program.

1. Advanced Placement Program — Students who submit results of Advanced Placement examinations are eligible to receive credit in accordance with the accompanying table.

2. SAT-II Subject Tests — Results of CEEB Advanced Placement Examinations or the SAT-II Subject Tests in French, German or Spanish are used for course placement and credit by examination purposes in accordance with the accompanying table.

3. International Baccalaureate Program — First-year students who submit results of International Baccalaureate Higher Level examinations with scores of 6 or 7 receive credit in anthropology, chemistry, economics, English, French, German, Greek, history of America, Latin, music, psychology and Spanish.

4. Notre Dame Examination Program — First-year students may take examinations for possible course credit in mathematics and foreign language. The examinations will be based on college-level courses. These departmental exams will be offered during the July language testing and advising sessions and again during the August orientation weekend.

In all of the cases, the credit awarded by the dean of the First Year of Studies is entered on the student transcript, which is maintained by the registrar’s office. This credit can be applied toward required or elective courses if the student’s particular college program permits. If Advanced Placement, International Baccalaureate or Notre Dame Examination credit is not applicable in a specific college program, that credit is recorded on the student’s transcript, but it represents credit in excess of graduation requirements.

The general guideline is that credit by examination is counted as required or elective credit if the course is required or permitted in a particular college program. Credit by examination is not counted as required or elective credit if the number of the course for which credit is awarded is lower than the initial course required in a particular college program. For example, if a student earns a 4 on the Advanced Placement Physics B test, the six credits awarded for PHYS 115-116 would count toward graduation in a College of Arts and Letters, Mendoza College of Business, or School of Architecture program. The credits would not count toward graduation in the engineering college.
SAT-II Subject Tests — Results of CEEB Advanced Placement Examinations or the SAT-II Subject Tests in French, French w/ Listening, German, German w/ Listening, or Spanish, Spanish w/ Listening are used for course placement and credit by examination purposes in accordance with the following schedules:

<table>
<thead>
<tr>
<th>SAT-II Subject Test</th>
<th>Advanced Placement</th>
<th>Credits (Courses)</th>
<th>Placement Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRENCH with LISTENING</td>
<td>790-880 5 (lang.)/4 (lit.)</td>
<td>6 (103-241)</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>690-780 4 (lang.)/5 (lit.)</td>
<td>6 (103-241)</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>590-680 3 (lang.)/2 (lit.)</td>
<td>6 (102-103)</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>490-580 2 (lang.)/1 (lit.)</td>
<td>6 (101-102)</td>
<td>103/115F</td>
</tr>
<tr>
<td></td>
<td>480 1(lang.)</td>
<td>3 (101)</td>
<td>102a</td>
</tr>
</tbody>
</table>

SPANISH with LISTENING	800 5 (lang.)/4 (lit.)	6 (201-202)	300+
SPANISH with LISTENING	690-790 4 (lang.)/3 (lit.)	6 (103-201)	202+
SPANISH with LISTENING	570-680 3 (lang.)/2 (lit.)	6 (102-103)	201
SPANISH with LISTENING	460-560 2 (lang.)/1 (lit.)	6 (101-102)	103
SPANISH with LISTENING	450 1(lang.)	3 (101)	102/118

GERMAN with LISTENING	790-880 5 (lang.)/4 (lit.)	6 (102-201)	202 or 300+
GERMAN with LISTENING	690-780 4 (lang.)/3 (lit.)	6 (101-102)	201
GERMAN with LISTENING	590-680 3 (lang.)/2 (lit.)	3 (101)	102

College Credit from Other Institutions

A. College courses completed on college campuses and used to satisfy high school graduation requirements or Notre Dame requirements for first-year admission are not accepted for credit.

B. Other college courses completed on college campuses prior to first-year enrollment at Notre Dame are considered for credit as determined by the First Year of Studies in consultation with the University's other colleges and departments. Normally, courses specified in the First Year Curriculum may not be satisfied through transfer credit. First-year students will be instructed to resolve all college credit situations before or during their first semester at Notre Dame and should present the necessary descriptions and other documentation as needed.

Advising Program

During the first year, academic and personal advising is provided by the First Year of Studies Office. First-year advising is done through a team approach. Each student is assigned to an advising team, which includes an advisor-director, several undergraduate peer advisors and consultants from among the faculties of the many departments of the University.

A meeting between a first-year student and a member of his or her advising team may be initiated by the advising team or by the student. A first-year student may request a meeting with a member of his or her advising team at any time and for any reason. All first-year students are encouraged to take advantage of this opportunity for personal guidance and assistance.
Learning Resource Center

The Learning Resource Center houses the Learning Strategies Program, the Tutoring Program, the Collaborative Learning Program, and the Academic and Career Information Library.

Learning Strategies Program

All First Year students interested in improving their skills for success in college may schedule workshops or individual meetings. The Learning Strategies Program covers a variety of topics of practical value to students (e.g., time management, note-taking, test preparation), including individual assistance with writing and reading.

Tutoring Program

The First Year of Studies Tutoring Program is available to all first-year students who would like to improve their understanding of course material. Students meet in small groups of up to 15. The smaller size and more flexible pace of the tutoring session encourages peer interaction, which may not occur naturally in a large lecture format, in addition to the more traditional tutor-student interaction, and provides a conducive setting for students to ask individual questions.

The tutoring offered through this program is not meant to replace classroom instruction, tutorials, recitation-quiz sections, private meetings or any other aids offered by a teacher or through a course.

Some of the tutoring is done individually, but most is done in small groups. There is never a charge for tutoring in the First Year of Studies tutoring program.

Collaborative Learning Program

The Collaborative Learning Program is open to all first-year students. In collaborative learning sessions, students solve homework problems together with more of a focus on the problem-solving method used rather than the correct answer. Collaborative learning resource leaders monitor the sessions, encourage problem-solving and collaboration among group members, and help answer questions when necessary.